Biologia plantarum 2013, 57:540-546 | DOI: 10.1007/s10535-012-0297-6
A type I MADS-box gene is differentially expressed in wheat in response to infection by the stripe rust fungus
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, P. R. China
The gene, designated TaMADS2, was obtained from wheat leaves infected with the wheat stripe rust fungus by in silico cloning and RT-PCR. TaMADS2 encodes a predicted 159-amino-acid polypeptide that contains a highly conserved MADS domain. Phylogenetic analysis revealed that TaMADS2 is a type I MADS-box gene. The TaMADS2 transcript was detected in wheat leaves, stems, and roots. The expression of TaMADS2 was substantially down-regulated in the compatible interaction between wheat and Puccinia striiformis f. sp. tritici (Pst) at 36 and 48 h post-inoculation (hpi), whereas in the incompatible interaction the down-regulation was only observed at 48 hpi. Exogenous salicylic acid (SA) and abscisic acid (ABA) greatly induced the expression of TaMADS2 at 12 h post treatment (hpt), whereas methyl jasmonate (MeJA) down-regulated TaMADS2 at 6 hpt by approximately two-fold.
Keywords: abscisic acid; methyl jasmonate; Puccinia striiformis f. sp. tritici; salicylic acid; TaMADS2; Triticum aestivum
Subjects: MADS-box; gene expression; Plant-pathogen interactions; abscisic acid; ethylene; methyl jasmonate; salicylic acid; wheat; fungal infection
Species: Triticum aestivum; Puccinia striiformis
Received: October 1, 2011; Accepted: October 8, 2012; Published: September 1, 2013Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., Yanofsky, M.F.: MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. - Plant J. 24: 457-466, 2000a. Go to original source...
- Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martínez-Castilla, L., Yanofsky, M.F.: An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. - Proc. nat. Acad. Sci. USA 97: 5328-5333, 2000b. Go to original source...
- Ando, S., Sato, Y., Kamachi, S., Sakai, S.: Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). - Planta 213: 943-952, 2001. Go to original source...
- Bonhomme, F., Kurz, B., Melzer, S., Bernier, G., Jacqmard, A.: Cytokinin and gibberellin activate SaMADSA, a gene apparently involved in regulation of the floral transition in Sinapis alba. - Plant J. 24: 103-111, 2000. Go to original source...
- Chen, X., Moore, M., Milus, E.A., Long, D.L., Line, R.F., Marshall, D., Jackson, L.: Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. - Plant Dis. 86: 39-46, 2002. Go to original source...
- Crampton, B.G., Hein I., Berger, D.K.: Salicylic acid confers resistance to a biotrophic rust pathogen, Puccina substriata, in pearl millet (Pennisetum glaucum). - Mol. Plant Pathol. 10: 291-304, 2009. Go to original source...
- De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouzé, P., Theissen, G., Van de Peer, Y.: Genome wide structural annotation and evolutionary analysis of the type I MADSbox genes in plants. - J. mol. Evol. 56: 573-586, 2003. Go to original source...
- Duun, R.M., Hedden, P., Bailey, J.P.: A physiologicallyinduced resistance of Phaseolus vulgaris to a compatible race of Colletotrichum lindemuthianum is associated with increases in ABA content. - Physiol. mol. Plant Pathol. 36: 339-349, 1990. Go to original source...
- Feys, B.J., Parker, J.E.: Interplay of signaling pathways in plant disease resistance. - Trends Genet. 16: 449-455, 2000. Go to original source...
- Jack, T.: Plant development going MADS. - Plant mol. Biol. 46: 515-520, 2001. Go to original source...
- Jones, J.D., Robert-Seilaniantz, A., Navarro, L., Bari, R.: Pathological hormone imbalances. - Curr. Opin. Plant Biol. 10: 372-379, 2007.
- Kang, Z.S., Huang, L.L., Buchenauer H.: Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J. Plant Dis. Protect. 109: 25-37, 2002.
- Kang, Z.S., Li, Z.Q., Chong, J., Rohringer, R.: [Ultrastructure and cytochemistry of haustorium of wheat stripe rust.] - Acta mycol. sin. 13: 52-57, 1994. [In Chin.]
- Kunkel, B.N., Brooks, D.M.: Cross talk between signaling pathways in pathogen defense. - Curr. Opin. Plant Biol. 5: 325-331, 2002. Go to original source...
- Lamb, C.J., Lawton, M.A., Dron, M., Dixon, R.A.: Signal and transduction mechanisms for activation of plant defenses against microbial attack. - Cell 56: 215-224, 1989. Go to original source...
- Lee, S., Woo, Y.M., Ryu, S.I., Shin, Y.D., Kim, W.T., Park, K.Y., Lee, I.J., An, G.: Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. - Plant Physiol. 147: 156 - , 2008. Go to original source...
- Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. - Methods 25: 402-408, 2001. Go to original source...
- Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J., Solano, R.: ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. - Plant Cell 15: 165-178, 2003. Go to original source...
- Mao, L., Begum, D., Chuang, H., Budiman, M.A., Szymkowiak, E.J., Irish, E.E., Wing, R.A.: JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. - Nature 406: 910-912, 2000.
- Mauch-Mani, B., Mauch, F.: The role of abscisic acid in plantpathogen interactions. - Curr. Opin. Plant Biol. 8: 409-414, 2005. Go to original source...
- Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., Theissen, G.: Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. - Proc. nat. Acad. Sci. USA 94: 2415-2420, 1997. Go to original source...
- Nam, J., Kim, J., Lee, S., An, G., Ma, H., Nei, M.: Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. - Proc. nat. Acad. Sci. USA 101: 1910-1915, 2004.
- Ng, M., Yanofsky, M.F.: Function and evolution of the plant MADS-box gene family. - Nat. Rev. Genet. 2: 186-195, 2001. Go to original source...
- Parenicova, L., De Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B.: Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. - Plant Cell 15: 1538-1541, 2003. Go to original source...
- Portereiko, M.F., Lloyd, A., Steffen, J.G., Punwani, J.A., Otsuga, D., Drews, G.N.: AGL80 is required for central cell and endosperm development in Arabidopsis. - Plant Cell, 18: 1862-1872, 2006.
- Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D.G.: Pathological hormone imbalances. - Curr. Opin. Plant Biol. 10: 372-379, 2007. Go to original source...
- Theissen, G.: Development of floral organ identity: stories from the MADS house. - Curr. Opin. Plant Biol. 4: 75-85, 2001. Go to original source...
- Theissen, G., Saedler, H.: Plant biology: floral quartets. - Nature 409: 469-471, 2001. Go to original source...
- Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.U., Saedler, H.: A short history of MADS-box genes in plants. - Plant mol. Biol. 42:115-149, 2000. Go to original source...
- Ton, J., Flors, V., Mauch-Mani, B.: The multifaceted role of ABA in disease resistance. - Trends Plant Sci. 14: 310-317, 2009. Go to original source...
- Wang, C.F., Huang, L.L., Buchenauer, H., Han, Q.M., Zhang, H.C., Kang, Z.S.: Histochemical studies on the accumulation of reactive oxygen species (O2 - and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. - Physiol. mol. Plant Pathol. 71: 230-239, 2007. Go to original source...
- Wang, Y.F., Qu, Z.P., Zhang, Y.H., Ma, J.B., Guo, J., Han, Q.M., Huang, L., Kang, Z.S.: [Construction of a cDNA library and analysis of expressed sequence tags in association with the incompatible interaction between wheat and Puccinia striiformis.] - Scientia agr. sin. 41: 3376-3381, 2008. [In Chin.]
- Xu, H., Li, X., Li, Q., Bai, S., Lu, W., Zhang, X.: Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. - Plant mol. Biol. 55: 209-220, 2004. Go to original source...
- Zeng, S.H., Xu, Y.Q., Wang, Y.: Isolation and characterization of two MADS-box genes from Lycium barbarum. - Biol. Plant. 55: 567-571, 2011. Go to original source...
- Zhang, G., Li, Y.M., Sun, Y.F., Wang, J.M., Liu, B., Zhao, J., Guo, J., Huang, L.L., Chen, X.M., Kang, Z.S.: Molecular characterization of a gene induced during wheat hypersensitive reaction to stripe rust. - Biol. Plant. 55: 696-702, 2011. Go to original source...
- Zhao, T., Ni, Z., Dai, Y., Yao, Y., Nie, X., Sun, Q.: Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). - Mol. Genet. Genom. 276: 334-350, 2006. Go to original source...
- Zhu, C., Perry, S.E.: Control of expression and autoregulation of AGL15, a member of the MADS-box family. - Plant J. 41: 583-594, 2005. Go to original source...