Biologia plantarum 61:155-168, 2017 | DOI: 10.1007/s10535-016-0642-2

Effects of nitric oxide and Fe supply on recovery of Fe deficiency induced chlorosis in peanut plants

Y. L. Song1, Y. J. Dong1,*, X. Y. Tian1, W. W. Wang1, Z. L. He2
1 College of Resources and Environment, Shandong Agricultural University, Tai'An, P.R. China
2 Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, USA

The effects of nitric oxide (NO) and/or iron (Fe) supplied to Fe deficient plants have been investigated in peanut (Arachis hypogaea L.) grown in Hoagland nutrient solution with or without Fe. Two weeks after Fe deprivation, recovery was induced by addition of 250 μM sodium nitroprusside (SNP, a NO donor) and/or 50 μM Fe (Fe-EDTA) to the Fe deprived (-Fe) nutrient solution. Activities of antioxidant enzymes, leaf chlorophyll (Chl), and active Fe content decreased, whereas activities of H+-ATPase, ferric-chelate reductase (FCR), nitrate reductase, and nitric oxide synthase and NO production increased in Fe deficient plants, consequently an Fe chlorosis symptom appeared obviously. In contrast, these symptoms disappeared gradually after two weeks with NO and/or Fe supply, which caused an increases in leaf Chl and active Fe content, especially following by co-treatment with NO and Fe to values found in Fe sufficient plants. Increased activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and decreased accumulation of reactive oxygen species (H2O2, O2*- ) and malondialdehyde enhanced the ability of resistance to oxidative stress. Supplied NO alone had the obvious effect on increased NO production and on activity of H+-ATPase and FCR, whereas root length and root/shoot ratio were most effectively increased by Fe supplied alone. Co-treatment with NO and Fe did the best effects on recovery peanut chlorosis symptoms by significantly increased Chl and available Fe content and adjusted distribution of Fe and other mineral elements (Ca, Mg, and Zn) in both leaves and roots.

Keywords: active Fe; antioxidant enzymes; chlorophyll; ferric-chelate reductase; H+-ATPase; nitrate reductase; nitric oxide synthase; reactive oxygen species
Subjects: nitric oxide; iron deficiency; chlorosis; chlorophyll; ferric chelate reductase; ATPase; calcium; magnesium; zinc; iron distribution; catalase; superoxide dismutase; nitrate reductase; nitric oxide synthase; peanut

Received: October 19, 2015; Revised: January 3, 2016; Accepted: February 19, 2016; Published: January 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Song, Y.L., Dong, Y.J., Tian, X.Y., Wang, W.W., & He, Z.L. (2017). Effects of nitric oxide and Fe supply on recovery of Fe deficiency induced chlorosis in peanut plants. Biologia plantarum61(1), 155-168. doi: 10.1007/s10535-016-0642-2.
Download citation

References

  1. Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B., Del Río, L.A., Palma, J.M., Corpas, F.J.: Metabolism of reactive oxygen species and reactive nitrogen species in pepper (1 L.) plants under low temperature stress. - Plant Cell Environ. 35: 281-295, 2012. Go to original source...
  2. Arnaud, N., Murgia, I., Boucherez, J., Briat, J.F., Cellier, F., Gaymard, F.: An iron induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. - J. biol. Chem. 281: 23579-88, 2006. Go to original source...
  3. Asai, S., Ohta, K., Yoshioka, H.: MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. - Plant Cell. 20: 1390-1406, 2008. Go to original source...
  4. Attree, R., Dua, B., Xu, B.J.: Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (1 L.). - Ind. Crops Prod. 67: 448-456, 2015. Go to original source...
  5. Bacaicoa, E., Mora, V., Zamarreño, Á. M., Fuentes, M., Casanova, E., García-Mina, J.M.: Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. - Plant Physiol. Biochem. 49: 545-556, 2011. Go to original source...
  6. Besson-Bard, A., Pugin, A., Wendehenne, D.: New insights into nitric oxide signaling in plants. - Annu. Rev. Plant Biol. 59: 21-39, 2008. Go to original source...
  7. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  8. Briat, J.F., Dubos, C., Gaymard, F.: Iron nutrition, biomass production, and plant product quality. - Trends Plant Sci. 20: 33-40, 2014. Go to original source...
  9. Briat, J.F., Duc, C., Ravet, K., Gaymard, F.: Ferritin and iron storage in plants. - Biochim. biophys. Acta. 1800: 806-814, 2010.
  10. Briskin, D.P., Leonard, R.T., Hodges, T.K.: Isolation of the plasma membrane: markers and general principles. - Method. Enzymol. 148: 542-558 1987. Go to original source...
  11. Chen, W.W., Yang, J.L., Qin, C., Jin, C.W., Mo, J.H., Ye, T., Zheng, S.J.: Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. - Plant Physiol. 154: 810-819, 2010. Go to original source...
  12. Colangelo, E.P., Guerinot, M.L.: The essential basic helix-loophelix protein FIT1 is required for the iron deficiency response. - Plant Cell. 16: 3400-3412, 2004. Go to original source...
  13. Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L., Guerinot, M.L.: Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. - Plant Physiol. 133: 1102-1110, 2003. Go to original source...
  14. Conte, S.S., Walker, E.L.: Transporters contribute to iron trafficking in plants. - Mol. Plant. 4: 464-76, 2011. Go to original source...
  15. Ding, F., Wang, X.F., Shi, Q.H., Wang, L., Yang, F.J., Gao, Q.H.: Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in irondeficient Chinese cabbage (Brassica chinensis L.) - Agr. Sci. China 7: 168-179, 2008. Go to original source...
  16. Du, S.T., Liu, Y., Zhang, P., Liu, H.J., Zhang, X.Q., Zhang, R.R.: Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). - Food Chem. 173: 905-911, 2015. Go to original source...
  17. Fernández-Marcos, M., Sanz, L., Lewis, D.R., Lorenzo, O.: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1(PIN1)- dependent acropetal auxin transport. - Proc. nat. Acad. Sci. USA 108: 18506-18511, 2011. Go to original source...
  18. Gao, L., Shi, Y.X.: Genetic differences in resistance to iron deficiency chlorosis in peanut. - J. Plant Nutr. 30: 37-52, 2007. Go to original source...
  19. García, M.J., Suárez, V., Romera, F.J., Alcántara, E., Pérez-Vicente, R.: A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. - Plant Physiol. Biochem. 49: 537-544, 2011. Go to original source...
  20. García-Mina, J.M., Bacaicoa, E., Fuentes, M., Casanova, E.: Fine regulation of leaf iron use efficiency and iron root uptake under limited iron bioavailability. - Plant Sci. 198: 39-45, 2013. Go to original source...
  21. Graziano, M., Beligni, M.V., Lamattina, L.: Nitric oxide improves internal iron availability in plants. - Plant Physiol. 130: 1852-1859, 2002.
  22. Graziano, M., Lamattina, L.: Nitric oxide and iron in plants: an emerging and converging story. - Trends Plant Sci. 10: 4-8, 2005. Go to original source...
  23. Graziano, M., Lamattina, L.: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. - Plant J. 52: 949-960, 2007. Go to original source...
  24. Guo, F.Q., Okamoto, M., Crawford, N.M.: Identification of a plant nitric oxide synthase gene involved in hormonal signaling. - Science 302: 100-103, 2003. Go to original source...
  25. Halliwell, B.: Reactive species and antioxidants redox biology is a fundamental theme of aerobic life. - Plant Physiol. 141: 312-322, 2006. Go to original source...
  26. Hakan, C. A., Vahap, K.: Some parameters in relation to iron nutrition status of peach orchads. - J. Biol. environ. Sci. 1: 111-115, 2007.
  27. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  28. Hell, R., Stephan, U.W.: Iron uptake, trafficking and homeostasis in plants. - Planta 216: 541-551, 2003. Go to original source...
  29. Hindt, M.N., Guerinot, M.L.: Getting a sense for signals: regulation of the plant iron deficiency response. - Biochim. biophys. Acta 1823: 1521-1530, 2012.
  30. Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. - Calif. Agr. Exp. Sta. Circular 347: 1-32, 1950.
  31. Ishimaru, Y., Kim, S.A., Tsukamoto, T., Oki, H., Kobayashi, T., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., Nishizawa, N.K.: Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. - Proc. nat. Acad. Sci. USA. 104: 7373-7378, 2007. Go to original source...
  32. Jasid, S., Simontacchi, M., Puntarulo, S.: Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes. - J. exp. Bot. 59: 3953-3962, 2008. Go to original source...
  33. Jaworski, E.G.: Nitrate reductase assay in intact plant tissues. - Biochem. biophys. Res. Commun. 43: 1274-1279, 1971. Go to original source...
  34. Jelali, N., Donnini, S., Dell'Orto, M., Abdelly, C., Gharsalli, M., Zocchi, G.: Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency. - Plant Biol. 16: 607-614, 2014. Go to original source...
  35. Kabir, A.H., Rahman, M.M., Haider, S.A., Paul, N.K.: Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). - Environ. exp. Bot. 112: 16-26, 2015. Go to original source...
  36. Knudson, L.L., Tibbitts, T.W., Edwards, G.E.: Measurement of ozone injury by determination of leaf chlorophyll concentration. - Plant Physiol. 60: 606-608, 1977. Go to original source...
  37. Kobayashi, T., Nishizawa, N.K.: Iron uptake, translocation and regulation in higher plants. - Annu Rev. Plant Biol. 63: 131-152, 2012. Go to original source...
  38. Kong, J., Dong, Y.J., Song, Y.L., Bai, X.Y., Tian, X.Y., Xu, L.L., Liu, S., He, Z.L.: Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.). - J. Plant Growth Regul. 35: 31-43, 2016. Go to original source...
  39. Kong, J., Dong, Y.J., Xu, L.L., Liu, S., Bai, X.Y.: Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. - Bot. Stud. 55: 1-9, 2014. Go to original source...
  40. Kumar, P., Tewari, R.K., Sharma, P.N.: Sodium nitroprussidemediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. - AoB Plants 2010, plq002. doi: 10.1093/aobpla/plq002 Go to original source...
  41. Larbi, A., Abadía, A., Abadía, J., Morales, F.: Down coregulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. - Photosynth. Res. 89: 113-126, 2006. Go to original source...
  42. Larbi, A., Abadía, A., Morales, F., Abadía, J.: Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without de novo chlorophyll synthesis. - Photosynth. Res. 79: 59-69, 2004. Go to original source...
  43. Larbi, A., Morales, F., Abadía, A., Abadía, J.: Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply. - J. Plant Physiol. 167: 255-260, 2010. Go to original source...
  44. Lee, S., Chiecko, J.C., Kim, S.A., Walker, E.L., Lee, Y., Guerinot, M.L., An, G.: Disruption of OsYSL15 leads to iron inefficiency in rice plants. - Plant Physiol. 150: 786-800, 2009. Go to original source...
  45. Li, H.: Principles and Techniques of Plant Physiological Experiment. - Higher Education Press, Beijing 2000.
  46. Liu, B., Rennenberg, H., Kreuzwieser, J.: Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. - Planta 241: 579-589, 2015. Go to original source...
  47. Liu, S.L., Yang, R.T., Pan, Y.Z., Ma, M.D., Pan, J., Zhao, Y., Cheng, Q.S., Wu, M.X., Wang, M.H., Zhang, L.: Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. - Ecotox. Environ. Safety 119: 35-46, 2015. Go to original source...
  48. López-Millán, A.F., Morales, F., Abadía, A., Abadía, J.: Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris L.) leaves. - Physiol Plant. 112: 3-38, 2001. Go to original source...
  49. Manai, J., Gouia, H., Corpas, F.J.: Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. - J Plant Physiol. 171: 1028-1035, 2014. Go to original source...
  50. Mahmoudi, H., Labidi, N., Ksouri, R., Gharsalli, M., Abdelly, C.: Differential tolerance to iron deficiency of chickpea varieties and Fe resupply effects. - Compt. Rend. Biol. 330: 237-246, 2007. Go to original source...
  51. Martin, M., Colman, M.J.R., Gomez-Casati, D.F., Lamattina, L., Zabaleta, E.J.: Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxindeficient Arabidopsis plants. - FEBS Lett. 583: 542-548, 2009. Go to original source...
  52. Mengel, K., Kirkby, E.A.: Principles of Plant Nutrition. - Kluwer Academic Publishers, Dordrecht 2001. Go to original source...
  53. Morrissey, J., Guerinot, M.L.: Iron uptake and transport in plants: the good, the bad, and the ionome. - Chem. Rev. 109: 4553-67, 2009. Go to original source...
  54. Nickel, K.S., Cunningham, B.A.: Improved peroxidase assay method using leuco 2,3,6-trichloro indophenol and application to comparative measurements of peroxidase catalysis. - Anal. Biochem. 27: 292-299, 1969. Go to original source...
  55. Ohinishi, T., Gall, R.S., Mayer, M.L.: An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. - Anal. Biochem. 69: 261-267, 1975. Go to original source...
  56. Osorio, J., Osorio, M.L., Correia, P.J., De Varennes, A., Pestana, M.: Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. - Sci. Hort. 165: 148-155, 2014. Go to original source...
  57. Palmgren, M.G.: Plant plasma membrane H+-ATPase: powerhouses for nutrient uptake. - Annu. Rev. Plant Biol. 52: 817-845, 2001. Go to original source...
  58. Patra, H.L., Kar, M., Mishre, D.: Catalase activity in leaves and cotyledons during plant development and senescence. - Biochem. Pharmacol. 172: 385-390, 1978.
  59. Pätsìkkä, E., Kairavuo, M., Šeršen, F., Aro, E.M., Tyystjärvi, E.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. - Plant Physiol. 129: 1359-1367, 2002. Go to original source...
  60. Pereira, M.P., Santos, C., Gomes, A., Vasconcelos, M.W.: Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.) - Plant Physiol. Biochem. 85: 21-30, 2014. Go to original source...
  61. Pestana, M., Correia, P.J., Saavedra, T., Gama, F., Abadía, A., De Varennes, A.: Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. - Plant Physiol. Biochem. 53: 1-5, 2012. Go to original source...
  62. Pii, Y., Penn, A., Terzano, R., Crecchio, C., Mimmo, T., Cesco, S.: Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. - Plant Physiol. Biochem. 87: 45-52, 2015. Go to original source...
  63. Ramirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., Lamattina, L.: Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. - Plant Sci. 181: 582-592, 2011. Go to original source...
  64. Ramirez, L., Zabaleta, E.J., Lamattina, L.: Nitric oxide and frataxin: Two players contributing to maintain cellular iron homeostasis. - Ann. Bot. 105: 801-810, 2010. Go to original source...
  65. Ranieri, A., Castagna, A., Baldan, B., Soldatini, G.F.: Iron deficiency differently affects peroxidase isoforms in sunflower. - J. exp. Bot. 52: 25-35, 2001. Go to original source...
  66. Rockel, P., Strube, F., Rockel, A., Wildt, J., Kaiser, W.M.: Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. - J. exp. Bot. 53: 103-110, 2002. Go to original source...
  67. Schmidt, W.: Iron solutions: acquisition strategies and signaling pathways in plants. - Trends Plant Sci. 8: 188-193, 2003. Go to original source...
  68. Shi, G.R., Su, G.Q., Lu, Z.W., Liu, C.F., Wang, X.M.: Relationship between biomass, seed components and seed Cd concentration in various peanut (Arachis hypogaea L.) cultivars grown on Cd-contaminated soils. - Ecotox. Environ. Safety 110: 174-181, 2014. Go to original source...
  69. Shi, Q. H., Ding, F., Wang, X. F., Wei, M.: Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. - Plant Physiol. Biochem. 45: 542-550, 2007. Go to original source...
  70. Shi, Q.H., Zhu, Z.J.: Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. - Environ. exp. Bot. 63: 317-326, 2008. Go to original source...
  71. Simontacchi, M., Buet, A., Lamattina, L., Puntarulo, S.: Exposure to nitric oxide increases the nitrosyl-iron complexes content in Sorghum embryonic axes. - Plant Sci. 183: 159-166, 2012. Go to original source...
  72. Sokolovski, S.G., Blatt, M.R.: Nitric oxide and plant ion channel control. - In: Lamattina, L., Polacco, J.C. (ed.): Nitric Oxide in Plant Growth, Development and Stress Physiology. Pp. 153-171. Springer, Berlin - Heidelberg 2007. Go to original source...
  73. Stewart, R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. - Plant Physiol. 65: 245-248, 1980. Go to original source...
  74. Sun, B., Jing, Y., Chen, K., Song, L., Chen, F., Zhang, L.: Protective effect of nitric oxide on iron deficiency- induced oxidative stress in maize (Zea mays). - J. Plant Physiol. 164: 536-543, 2007. Go to original source...
  75. Su, Y., Liu, J.L., Lu, Z.W., Wang, X.M., Zhang, Z., Shi, G.G.: Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. - Environ. exp. Bot. 97: 40-48, 2014. Go to original source...
  76. Takker, P.N., Kaur. N.P.: HCl method for Fe2+ estimation to resolve iron chlorosis in plants. - J. Plant Nutr. 7: 81-90, 1984. Go to original source...
  77. Tomasi, N., Rizzardo, C., Monte, R., Gottardi, S., Jelali, N., Terzano, R., Vekemans, B., De Nobili, M., Varanini, Z., Pinton, R., Cesco, S.: Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants resupplied with natural Fe-complexes in nutrient solution. - Plant Soil 325: 25-38, 2009. Go to original source...
  78. Ueno, T., Yoshimura, T.: The physiological activity and in vivo distribution of dinitrosyl dithiolate iron complex. - Jap. J. Pharmacol 82: 95-101, 2000.
  79. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants. - Plant Sci. 151: 59-66, 2000. Go to original source...
  80. Vert, G.A., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., Curie, C.: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. - Plant Cell 14: 1223-1233, 2002. Go to original source...
  81. Wendehenne, D., Pugin, A., Klessig, D.F., Durner, J.: Nitric oxide: comparative synthesis and signaling in animal and plant cells. - Trends Plant Sci. 6: 177-83, 2001. Go to original source...
  82. Xiong, H.C., Guo, X.T., Kobayashi, T., Kakei, Y., Nakanishi, H., Nozoye, T., Zhang, L.X., Shen, H.Y., Qiu, W., Nishizawa, N.K., Zuo, Y.M.: Expression of peanut iron regulated transporter 1 in tobacco and rice plants confers improved iron nutrition. - Plant Physiol. Biochem. 80: 83-89, 2014. Go to original source...
  83. Xiong, Y., Yuan, L.W., Deng, H.W., Li, Y.J., Chen, B.M.: Elevated serum endogenous inhibitor of nitric oxide synthase and endothelial dysfunction in aged rats. - Clin. exp. Pharmacol. 28: 842-847, 2001. Go to original source...
  84. Xu, J., Yin, H.X., Liu, X.J., Yuan, T., Mi, Q., Yang, L.L., Xie, Z.X., Wang, W.Y.: Nitric oxide alleviates Fe deficiencyinduced stress in Solanum nigrum. - Biol. Plant. 53: 784-788, 2009. Go to original source...
  85. Xu, Y.F., Sun, X.L., Jin, J.W., Zhou. H.: Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. - J. Plant Physiol. 167: 512-518, 2010. Go to original source...