Biologia plantarum 61:611-621, 2017 | DOI: 10.1007/s10535-017-0723-x

Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses

G. Y. Yang1,3, W. H. Zhang2, Y. D. Sun1, T. T. Zhang1, D. Hu1, M. Z. Zhai1,*
1 Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, P.R. China
2 Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
3 Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Changsha, Hunan, P.R. China

Genes encoding plant WRKY transcription factors are important for stress response. In the current study, two WRKY transcription factor genes (JrWRKY6 and JrWRKY53) were identified from walnut (Juglans regia L.), and their function and involvement in stress responses were characterized. Under NaCl stress, JrWRKY6 and JrWRKY53 were upregulated in a short time (within 6 h of seedling exposure to salt) except in roots, in which the highest induction occurred at 24 and 48 h of salt exposure. The gene expression patterns under polyethylene glycol stress were similar to those under NaCl stress. Under heat stress, both genes were induced in all tissues, except for JrWRKY6 in leaf tissue of seedlings treated for 24 and 48 h. Both genes were also induced in all plants exposed to cold stress, except for JrWRKY6 in root tissue of seedlings exposed for 6 h and JrWRKY53 in root tissue exposed for 48 h. JrWRKY6 and JrWRKY53 also showed varied responses to abscisic acid (ABA), with the maximum expression being for JrWRKY6 in the roots of plants treated for 1 h, and JrWRKY53 in the leaves of plants treated for 3 h. Furthermore, under NaCl, sorbitol, heat, cold, and ABA treatments, yeast cells transformed with JrWRKY6 and JrWRKY53 showed an improved growth activity and density relative to the empty-vector-containing control yeast. Moreover, JrWRKY6 or JrWRKY53 could bind to the W-box motif. These results suggest that JrWRKY6 and JrWRKY53 can response positively to abiotic stressors and improve the plant tolerance to salinity, osmotic stress, and abnormal temperatures in a mechanism that likely involves the ABA signalling pathway and W-box binding activity.

Keywords: cold; gene expression; heat; NaCl; polyethylene glycol; walnut
Subjects: WRKY genes; abscisic acid; cold stress; heat stress; salinity; polyethylene glycol; phylogenetic tree; sorbitol; walnut
Species: Juglans regia

Received: April 11, 2016; Revised: November 22, 2016; Accepted: December 9, 2016; Published: December 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yang, G.Y., Zhang, W.H., Sun, Y.D., Zhang, T.T., Hu, D., & Zhai, M.Z. (2017). Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses. Biologia plantarum61(4), 611-621. doi: 10.1007/s10535-017-0723-x.
Download citation

Supplementary files

Download filebpl-201704-0002_S1.pdf

File size: 768.22 kB

References

  1. Abdallah, I.B., Tlili, N., Martinez-Force, E., Rubio, A.G., Perez-Camino, M.C., Albouchi, A., Boukhchina, S.: Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. - Food Chem. 173: 972-978, 2015. Go to original source...
  2. Ban, Q., Liu, G., Wang, Y.: A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. - J. Plant. Physiol. 168: 449-458, 2011. Go to original source...
  3. Berri, S., Abbruscato, P., Faivre-Rampant, O., Brasileiro, A. C., Fumasoni, I., Satoh, K., Kikuchi, S., Mizzi, L., Morandini, P., Pe, M.E., Piffanelli, P.: Characterization of WRKY coregulatory networks in rice and Arabidopsis. - BMC Plant Biol. 9: 120, 2009. Go to original source...
  4. Bouabdallah, I., Bouali, I., Martinez-Force, E., Albouchi, A., Perez-Camino, M.C., Boukhchina, S.: Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. - Nat. Prod. Res. 28: 1826-1833, 2014.
  5. Choi, C., Hwang, S. H., Fang, I. R., Kwon, S. I., Park, S. R., Ahn, I., Kim, J. B., Hwang, D. J.: Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesisrelated (PR) 10a promoter and confers reduced susceptibility to pathogens. - New. Phytol. 208: 846-859, 2015 Go to original source...
  6. Ciolkowski, I., Wanke, D., Birkenbihl, R.P., Somssich, I.E.: Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. - Plant. mol. Biol. 68: 81-92, 2008. Go to original source...
  7. Dang, F.F., Wang, Y.N., Yu, L., Eulgem, T., Lai, Y., Liu, Z.Q., Wang, X., Qiu, A.L., Zhang, T.X., Lin, J., Chen, Y.S., Guan, D.Y., Cai, H.Y., Mou, S.L., He, S.L.: CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. - Plant. Cell. Environ. 36: 757-774, 2013. Go to original source...
  8. Dong, J., Chen, C., Chen, Z.: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. - Plant. mol. Biol. 51: 21-37, 2003. Go to original source...
  9. Eulgem, T., Rushton, P,J., Robatzek, S., Somssich, I.E.: The WRKY superfamily of plant transcription factors. - Trends. Plant. Sci. 5: 199-206, 2000. Go to original source...
  10. Fan, Q., Song, A., Jiang, J., Zhang, T., Sun, H., Wang, Y., Chen, S., Chen, F.: CmWRKY1 enhances the dehydration tolerance of Chrysanthemum through the regulation of ABA-associated genes. - PLoS ONE 11: e0150572, 2016. Go to original source...
  11. Forwood, J.K., Lam, M.H., Jans, D.A.: Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. - Biochemistry 40: 5208-5217, 2001. Go to original source...
  12. Gao, C., Jiang, B., Wang, Y., Liu, G., Yang, C.: Overexpression of a heat shock protein (ThHSP18. 3) from Tamarix hispida confers stress tolerance to yeast. - Mol. Biol. Rep. 39: 4889-4897, 2012. Go to original source...
  13. Jaffar, M.A., Song, A., Faheem, M., Chen, S., Jiang, J., Liu, C., Fan, Q., Chen, F.: Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway. - Int. J. mol. Sci. 17: e693, 2016. Go to original source...
  14. Jiang, Y., Deyholos, M.K.: Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. - Plant. Mol. Biol. 69: 91-105, 2009. Go to original source...
  15. Li, S., Fu, Q., Huang, W., Yu, D.: Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. - Plant. Cell. Rep. 28: 683-693, 2009. Go to original source...
  16. Li, S.J., Fu, Q.T., Chen, L.G., Huang, W.D.: Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. - Planta 233: 1237-1252, 2011. Go to original source...
  17. Li, X., Zhang, D., Li, H., Wang, Y., Zhang, Y., Wood, A.J.: EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. - BMC Plant Biol. 14: 44, 2014. Go to original source...
  18. Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., Huang, S., Xie, B.: Genome-wide analysis of WRKY gene family in Cucumis sativus. - BMC Genomics 12: 471, 2011. Go to original source...
  19. Liu, J., Wang, F., Yu, G., Zhang, X., Jia, C., Qin, J., Pan, H.: Functional analysis of the maize C-Repeat/DRE motifbinding transcription factor CBF3 promoter in response to abiotic stress. - Int. J. mol. Sci. 16: 12131-12146, 2015. Go to original source...
  20. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  21. Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. - Front. Plant. Sci. 5: 170, 2014. Go to original source...
  22. Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B., Lin, Q., Zhang, Z.B., Zhang, J.S., Chen, S.Y.: Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. - Plant Cell Environ. 35: 1156-1170, 2012. Go to original source...
  23. Pope, K.S., Dose, V., Da-Silva, D., Brown, P.H., DeJong, T.M.: Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. - Int. J. Biometeorol. 14: 14, 2014.
  24. Qureshi, M.N., Stecher, G., Bonn, G.K.: Determination of total polyphenolic compounds and flavonoids in Juglans regia leaves. - Pak. J. Pharmacol. Sci. 27: 865-869, 2014.
  25. Ramamoorthy, R., Jiang, S.Y., Kumar, N., Venkatesh, P.N., Ramachandran, S.: A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. - Plant Cell Physiol. 49: 865-879, 2008. Go to original source...
  26. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., Yu, G.: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. - Science 290: 2105-2110, 2000. Go to original source...
  27. Scarpeci, T.E., Zanor, M.I., Mueller-Roeber, B., Valle, E.M.: Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. - Plant. mol. Biol. 83: 265-277, 2013. Go to original source...
  28. Shukla, P.S., Agarwal, P., Gupta, K., Agarwal, P.K.: Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. - AoB Plants 17: 7, 2015. Go to original source...
  29. Tripathi, P., Rabara, R.C., Rushton, P.J.: A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. - Planta 239: 255-266, 2014. Go to original source...
  30. Van-Verk, M.C., Bol, J.F., Linthorst, H.J.: WRKY transcription factors involved in activation of SA biosynthesis genes. - BMC Plant. Biol. 11: 89, 2011. Go to original source...
  31. Wang, F., Hou, X., Tang, J., Wang, Z., Wang, S., Jiang, F., Li, Y.: A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. - Mol. Biol. Rep. 39: 4553-4564, 2012. Go to original source...
  32. Wang, L., Zheng, L., Zhang, C., Wang, Y., Lu, M., Gao, C.: ThWRKY4 from Tamarix hispida can form homodimers and heterodimers and is involved in abiotic stress responses. - Int. J. mol. Sci. 16: 27097-27106, 2015. Go to original source...
  33. Wang, L., Zhu, W., Fang, L., Sun, X., Su, L., Liang, Z., Wang, N., Londo, J. P., Li, S., Xin, H.: Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. - BMC Plant. Biol. 14: 103, 2014. Go to original source...
  34. Wang, Z., Zhu, Y., Wang, L., Liu, X., Liu, Y., Phillips, J., Deng, X.: A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. - Planta 230: 1155-1166, 2009. Go to original source...
  35. Wei, K.F., Chen, J., Chen, Y.F., Wu, L.J., Xie, D.X.: Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. - DNA Res. 19: 153-164, 2012. Go to original source...
  36. Wei, W., Zhang, Y., Han, L., Guan, Z., Chai, T.: A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. - Plant Cell Rep. 27: 795-803, 2008. Go to original source...
  37. Wen, F., Zhu, H., Li, P., Jiang, M., Mao, W., Ong, C., Chu, Z.: Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon. - DNA Res. 21: 327-339, 2014. Go to original source...
  38. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K.: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. - Plant Cell Rep. 28: 21-30, 2009. Go to original source...
  39. Xu, F., Deng, G., Cheng, S.Y., Zhang, W.W., Huang, X.H., Li, L.L., Cheng, H., Rong, X.F., Li, J.B.: Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. - Molecules 17: 7810-7823, 2012. Go to original source...
  40. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Biol. 57: 781-803, 2006. Go to original source...
  41. Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., Yang, C.: Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. - Plant Cell Tissue Cult. 117: 99-112, 2014. Go to original source...
  42. Yang, G., Wang, C., Wang, Y., Guo, Y., Zhao, Y., Yang, C., Gao, C.: Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of cadmium stress. - Sci. Rep. 6: 18752, 2016a. Go to original source...
  43. Yang, G., Xu, Z., Peng, S., Sun, Y., Jia, C., Zhai, M.: In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. - Plant Cell Rep. 35: 681-692, 2016b. Go to original source...
  44. Yokotani, N., Sato, Y., Tanabe, S., Chujo, T., Shimizu, T., Okada, K., Yamane, H., Shimono, M., Sugano, S., Takatsuji, H., Kaku, H., Minami, E., Nishizawa, Y.: WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. - J. exp. Bot. 64: 5085-5097, 2013. Go to original source...
  45. Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K.: ABAdependent and ABA-independent signaling in response to osmotic stress in plants. - Curr. Opin. Plant. Biol. 21: 133-139, 2014. Go to original source...
  46. Zheng, L., Liu, G., Meng, X., Liu, Y., Ji, X., Li, Y., Nie, X., Wang, Y.: A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. - Plant. mol. Biol. 82: 303-320, 2013. Go to original source...