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Abstract. The paper presents the results of numerical solution of the Allen-Cahn equation
with a non-local term. This equation originally mentioned by Rubinstein and Sternberg in
1992 is related to the mean-curvature flow with the constraint of constant volume enclosed
by the evolving curve. We study this motion approximately by the mentioned PDE, gener-
alize the problem by including anisotropy and discuss the computational results obtained.
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1. Introduction

The paper deals with the initial-boundary value problem for the non-local reaction-

diffusion equation
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f0(p) dx,(1.1)
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for the unknown function p = p(t, x) defined for x ∈ Ω and t ∈ (0, T ), where

Ω = (0, L1) × (0, L2) ∈ R
2 is a rectangular domain, for simplicity. The parameter

0 < ξ ≪ 1 is related to the thickness of the interface layer which can develop in

parts of the solution with steep gradient. This behaviour is given by the shape of

the polynomial

f0(p) = ap(1 − p)
(

p −
1

2

)

,
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with a > 0 which is derived from a double-well potential w0 as w′

0 = −f0, and is

justified by the matched asymptotic expansion. Consequently, the values 0 and 1

of the function p prevail in Ω whereas the transition between them forms a thin

interface layer. This allows to understand p as an indicator of the liquid and solid

phases. The function pini is the initial condition.

The problem (1.1) has been introduced in [1] as a modification of the Allen-Cahn

equation [2], [3] approximating the mean-curvature flow [7]. In [6] the axisymmet-

ric case was studied to provide information on the singular-limit behaviour of the

selected level set. As described e.g. in [8] the problem (1.1) is closely related to the

diffuse-interface models of phase transitions. In particular, the non-local character

of the equation is connected to the recrystallization phenomena where a fixed previ-

ously melted volume of the liquid phase solidifies again. Respecting the fact that a

real material always exhibits an anisotropy of the surface energy, this article suggests

to modify (1.1) by introducing anisotropy in the relative geometry similarly to [7]

and to study numerical solution providing the motion of a selected level set.

2. Equations

As mentioned above, the problem (1.1) is modified using the following framework

(compare with [7] and references therein). We consider a nonnegative function Φ:

R
n → R

+
0 which is smooth, strictly convex, C

2(Rn \ {0}) and satisfies:

Φ(tη) = |t|Φ(η), t ∈ R, η ∈ R
n,(2.1)

λ|η| 6 Φ(η) 6 Λ|η|,

where λ, Λ > 0. The function given by

Φ0(η∗) = sup{η∗ · η | Φ(η) 6 1}

is its dual. They satisfy the relations

Φ0
η(tη∗) =

t

|t|
Φ0

η(η∗), Φ0
ηη(tη∗) =

1

|t|
Φ0

ηη(η∗), t ∈ R \ {0},(2.2)

Φ(η) = Φη(η) · η, Φ0(η∗) = Φ0
η(η∗) · η∗, η, η∗ ∈ R

n,

where the index η means derivative with respect to η (Φη is the total derivative

consisting of partial derivatives with respect to components of the vector η).

The mapping Φ plays the role of a distance (norm) replacing the Euclidean distance

in the analysis of the problem to be derived from (1.1). Consequently, the dual
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mapping Φ0 enters the problem (1.1) itself. For this purpose, we define the map

T 0 : R
n → R

n as

T 0(η∗) = Φ0(η∗)Φ0
η(η∗) for η∗ 6= 0,

T 0(0) = 0.

This allows to define the Φ-gradient of a smooth function u:

(2.3) ∇Φu = T 0(∇u) = Φ0(∇u)Φ0
η(∇u).

If we assume that the hypersurface Γ(t) is given by a level set of the field function

P = P (t, x), then

Γ(t) = {x ∈ R
n | P (t, x) = const.},

and the Φ-normal vector (the Cahn-Hoffmann vector) and the velocity of Γ(t) given

by the field P are

nΓ,Φ = −
∇ΦP

Φ0(∇P )
= −

T 0(∇P )

Φ0(∇P )
, vΓ,Φ =

∂tP

Φ0(∇P )
.

The anisotropic curvature is given by the formula

κΓ,Φ = div(nΓ,Φ).

Note that in the isotropic case, Φ(·) = | · | and the normal vector, the normal velocity

and the isotropic curvature are denoted by nΓ, vΓ and κΓ.

E x am p l e. In practice, the choice of anisotropy is given by the shape of Φ0. In

2D, we typically use the dual metric set as

Φ0(η∗) = ̺Ψ(θ),

where [̺, θ] are polar coordinates of η∗. Using the duality relationship (Φ0)0 = Φ,

we find that

Φ(η) = |η|
cos(θ∗ − θ0)

Ψ(θ∗)
,

where η has the polar coordinates |η|, θ0, and θ∗ is the solution of the equation

tan(θ∗ − θ0) = −
Ψ′(θ∗)

Ψ(θ∗)
.

Our choice can be Ψ(θ) = 1+A sin(mθ), where A > 0 is the anisotropy strength, and

m = 2, 4, . . . the order of symmetry. The convexity condition reads A 6 (m2 − 1)−1.

In higher dimensions, the anisotropy can explore e.g. various norms of the lp type.
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R em a r k. The (strong) monotonicity of the operator T 0 is equivalent to the

(strict) convexity of the functional

∫

Ω

Φ0(∇p)2 dx.

Wu l f f s h a p e representing the unit ball under the metric Φ is defined in [7],

and can be parametrized as follows:

W : x(θ) = Ψ(θ) cos(θ) − Ψ′(θ) sin(θ),

y(θ) = Ψ(θ) sin(θ) + Ψ′(θ) cos(θ).

In Figure 1, we show examples of various anisotropies in terms of the Wulff shape.

Ψ(θ) = 1 Ψ(θ) = 1 + 0.1 cos(3θ) Ψ(θ) = 1 + 0.2 cos(4θ)

Figure 1. Examples of the Wulff shape as the boundary of the convex interior for presented
patterns.

I B VP. In analogy to the isotropic problem (1.1), we propose to use the modified

Allen-Cahn equation approximating the motion of the manifold Γ through the level

set 1

2
of its solution (see e.g. [7]). For the sake of simplicity, we are restricted to two-

dimensional rectangular domain and homogeneous Neumann boundary conditions.

We choose a rectangular domain Ω = (0, L1)× (0, L2) ⊂ R
2, x = [x1, x2] ∈ Ω, and

the time variable t ∈ (0, T ). The problem for the unknown function p = p(t, x) reads

ξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1

ξ
f0(p) −

1

ξ|Ω|

∫

Ω

f0(p) dx, in (0, T )× Ω,(2.4)

∂p

∂n

∣

∣

∣

∂Ω
= 0 on (0, T ) × ∂Ω, p

∣

∣

t=0
= pini in Ω.
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3. Numerical solution

For the numerical solution of the problem (2.4), we use the method of lines com-

bined with the finite-difference method on a uniform spatial grid with N1, N2 de-

noting the number of mesh points in the direction of x1, x2, respectively. We also

introduce the following notation:

h1 =
L1

N1

, h2 =
L2

N2

,

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1},

ωh = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2},

γh = ωh \ ωh,

ux̄1,ij =
uij − ui−1,j

h1

, ux1,ij =
ui+1,j − uij

h1

, ∇hu = [ux̄1
, ux̄2

],

ux̄2,ij =
uij − ui,j−1

h2

, ux2,ij =
ui,j+1 − uij

h2

, ∇hu = [ux1
, ux2

],

(u, v)h =

N1,N2
∑

i,j=1

h1h2uijvij

for u, v : ωh → R. The set of grid functions defined on ωh, respecting the discrete

Neumann boundary conditions (bc(p
h) |γh

= 0), and endowed with the scalar product

(·, ·)h is denoted by Hh.

On ωh, the semi-discrete scheme has the form

ξ2 dph

dt
= ξ2∇h · T 0(∇hph) + f0(p

h) −
1

|Ω|h
(f0(p

h), 1)h,(3.1)

bc(p
h) |γh

= 0, ph(0) = Phpini,

where its solution is a map ph : 〈0, T 〉 → Hh, Ph : C(Ω) → Hh is a restriction

operator, |Ω|h = (N1 − 1)(N2 − 1)h1h2. The resulting system of ordinary differential

equations in time is solved by the Runge-Kutta-Merson scheme as in [8].

R em a r k. It can be observed that the scheme satisfies the mass constraint

(ph(t), 1)h = (ph(0), 1)h.
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4. Computational studies

We use the scheme (3.1) to perform a series of computational studies showing the

behavior of the solution to (2.4) itself as well as the behavior of the level set 1

2
of the

solution which is shown (see [6]) to be close to the constrained mean-curvature flow

vΓ = −κΓ +
1

|Γ|

∫

Γ

κΓ dl,

and close to the mean-curvature flow under some circumstances:

vΓ = −κΓ.

We try to extend this experience to the anisotropic setting of these two laws

vΓ,Φ = −κΓ,Φ +
1

|Γ|Φ

∫

Γ

κΓ,Φ dl,(4.1)

vΓ,Φ = −κΓ,Φ,(4.2)

where

|Γ| =

∫

Γ

dl, and |Γ|Φ =

∫

Γ

Φ0(nΓ) dl.

The computations are analyzed using the following measured quantities:

• Area enclosed by Γ (it should be approximately constant) A =
∫

IntΓ
dx.

• Curve energy (anisotropic length) |Γ|Φ =
∫

Γ
Φ0(nΓ) dl.

• Anisoperimetric ratio (it should approach the value 1) Aniso = |Γ|2Φ/(4A|W |),

where |W | is the Wulff-shape area.

• Mass (it must be constant due to (3.1)) M(t) = (ph(t), 1)h.

The following examples demonstrate how the solution of (2.4) approaches the

conserved law (4.1) where the curve pattern converges to the Wulff shape given by

the crystalline anistotropy, or the usual law (4.2) where the curve vanishes.

E x am p l e 1. The first study shows the behavior of the solution when the initial

condition mimics a four-folded curve given by the formula r0(s) = 1 + 0.3 cos(4s),

s ∈ 〈0, 2π). The motion on the time interval 〈0, 0.4〉 driven by the anisotropic problem

(2.4) leads to the formation of the corresponding steady curve adopting the Wulff

shape. The anisotropy is given by the formula

Ψ(θ) = 1 + 0.025 cos(6θ),

and the limiting law at large time scales is approaching (4.1). The interface thickness

is ξ = 0.035, and the numerical mesh size h1 = h2 = 0.03. The CPU time of the
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computation was 145.45 s on Pentium IV, 1.66MHz. From Table 1, the time evolution

of the enclosed area, curve energy, anisoperimetric ratio and mass can be seen. The

slide-down of values of A agrees with [1]—in short time, the evolution law for the

curve differs from the long-term evolution law.

Shape of p at t = 0.00 Shape of p at t = 0.40

Figure 2. Solution of the Allen-Cahn equation with projection of the level set p = 1

2
for

Example 1.
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Figure 3. Dynamics of the level set for Example 1.

Time enclosed area curve energy anisoperimetric ratio mass
0.00 3.2829324353 8.1675881993 1.6349034454 5.5350801809
0.08 3.1997527356 6.5855428285 1.0905187217 5.5350801809
0.16 3.1999598410 6.3353602567 1.0091703716 5.5350801809
0.24 3.1989548827 6.3097806184 1.0013520526 5.5350801809
0.32 3.1973191899 6.3071531255 1.0010301162 5.5350801809
0.40 3.1982783461 6.3065026391 1.0005235003 5.5350801809

Table 1. Measured data for Example 1.
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E x am p l e 2. The second study shows the behavior of the solution when the

initial condition mimics two four-folded curves one inside the other, given by the

formulas r0(s) = 1 + 0.2 cos(4s) and r1(s) = 0.5 + 0.2 cos(4s), s ∈ 〈0, 2π). The

anisotropy is given by the formula

Ψ(θ) = 1 + 0.3 cos(4θ).

In agreement with [6] the motion on the time interval 〈0, 0.4〉 driven by the

anisotropic problem (2.4) leads to the fast shrinking of the internal curve according

to the mean-curvature flow (4.2) and to the evolution of the external curve towards

the corresponding steady curve adopting the Wulff shape by (4.1). The interface

thickness is ξ = 0.035, and the numerical mesh size h1 = h2 = 0.03. The CPU time

of the computation was 57.55 s on Pentium IV, 1.66 MHz.

Shape of p at t = 0.00 Shape of p at t = 0.15

Figure 4. Solution of the Allen-Cahn equation with projection of the outer level set p = 1
2

for Example 2.
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Figure 5. Dynamics of the level set for Example 2.

436



5. Conclusion

The paper introduces a numerical scheme allowing to perform computational stud-

ies of the anisotropic nonlocal Allen-Cahn equation. The studies confirmed the the-

oretical indications that the solution approaches the conserved mean-curvature flow

in long term. Any additional curve located in the interior moves according to the

usual law of motion by mean curvature. This behaviour is in agreement with the

recrystallization phenomena in the solid phase.
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