Biologia plantarum 60:132-138, 2016 | DOI: 10.1007/s10535-015-0563-5

Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses

N. A. Al-Quraan1,*, A. T. Al-Share1
1 Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan

In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.

Keywords: abiotic stress; cold; GABA; heat; osmotic stress; salinity
Subjects: GABA shunt; oxidative stress; pop 2 mutants; temperature - high; temperature - low; osmotic stress; salinity; malondialdehyde
Species: Arabidopsis thaliana

Received: January 10, 2015; Revised: June 25, 2015; Accepted: July 27, 2015; Published: January 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Al-Quraan, N.A., & Al-Share, A.T. (2016). Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses. Biologia plantarum60(1), 132-138. doi: 10.1007/s10535-015-0563-5.
Download citation

Supplementary files

Download filebpl-201601-0014_S1.pdf

File size: 66.64 kB

References

  1. Akçay, N., Bor, M., Karabudak, T., Özdemir, F., Türkan, I.: Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. - J. Plant. Physiol. 169: 452-458, 2012. Go to original source...
  2. Al-Quraan, N.A.: GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants. - Acta. Physiol. Plant. 37: 1-11, 2015. Go to original source...
  3. Al-Quraan, N.A., Locy, R.D., Singh, N.K.: Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants. - Plant. Biotechnol. Rep. 5: 225-234, 2011. Go to original source...
  4. Al-Quraan, N.A., Locy, R.D., Singh, N.K.: Heat and cold stresses phenotypes of Arabidopsis thaliana calmodulin mutants: regulation of gamma-aminobutyric acid shunt pathway under temperature stress. - Int. J. Plant. Biol. 3: 9-17, 2012. Go to original source...
  5. Al-Quraan, N.A., Sartawe, F.A., Qaryouti, M.M.: Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. - J. Plant. Physiol. 170: 1003-1009, 2013. Go to original source...
  6. Bartyzel, I., Pekzar, K., Paszkowski, A.: Functioning of the gamma-aminobutyrate pathway in wheat seedlings affected by osmotic stress. - Biol. Plant. 47: 221-225, 2003.
  7. Beuve, N., Rispail, N., Laine, P., Cliquet, J-B., Ourry, A., Le Deunff, E.: Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. - Plant Cell Environ. 27: 1035-1046, 2004. Go to original source...
  8. Bohnert, H.J., Nelson, D.E., Jensen, R.G.: Adaptation to environmental stresses. - Plant Cell 7: 1099-1111, 1995. Go to original source...
  9. Bouché, N., Fait, A., Bouché, D., Moller, S.G., Fromm, H.: Mitochondrial succinate-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt in required to restricts levels of reactive oxygen intermediates in plants. - Proc. nat. Acad. Sci. USA 100: 6843-6848, 2003a. Go to original source...
  10. Bouché, N., Fromm, H.: GABA in plants: just a metabolite? - Trends Plant. Sci. 9: 110-115, 2004. Go to original source...
  11. Bouché, N., Lacombe, B., Fromm, H.: GABA signaling: a conserved and ubiquitous mechanism. - Trends Cell Biol. 13: 607-610, 2003b. Go to original source...
  12. Bouché, N., Yellin, A., Snedden, W.A., Fromm, H.: Plantspecific calmodulin-binding proteins. - Annu. Rev. Plant. Biol. 56: 435-466, 2005. Go to original source...
  13. Bown, A.W., Shelp, B.J.: The metabolism and functions of gamma-aminobutyric acid. - Plant. Physiol. 115: 1-5, 1997. Go to original source...
  14. Breitkreuz, K.E., Shelp, B.J.: Subcellular compartmentalization of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. - Plant. Physiol. 108: 99-103, 1995. Go to original source...
  15. Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R.: Highway or byway: the metabolic role of the GABA shunt in plants. - Trends Plant. Sci. 13: 14-19, 2008. Go to original source...
  16. Forde, B.G., Lea, P.J.: Glutamate in plants: metabolism, regulation, and signaling. - J. exp. Bot. 58: 2339-2358, 2007. Go to original source...
  17. Foyer, C.H., Descourvieres, P., Kunert, K.J.: Protection against oxygen radicals: an important defense mechanisms studies in transgenic plants. - Plant. Cell Environ. 17: 507-523, 1994. Go to original source...
  18. Harndahl, U., Hall, R., Osteryoung, K.: The chloroplastic small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. - Cell Stress Chaperon. 4: 129-138, 1998.
  19. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  20. Hetherington, A., Brownlee, C.: The generation of Ca2+ signal in plants. - Annu. Rev. Plant. Biol. 55: 401-428, 2004. Go to original source...
  21. Hong, S.W., Vierling, E.: Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. - Proc. nat. Acad. Sci. USA 97: 4392-4397, 2000. Go to original source...
  22. Kinnersley, A.M., Turano, F.J.: Gamma aminobutyric acid (GABA) and plant responses to stress. - Crit. Rev. Plant. Sci. 19: 479-509, 2000. Go to original source...
  23. Lancien, M., Roberts, M.R.: Regulation of Arabidopsis thaliana 14-3-3 gene expression by gamma-aminobutyric acid. - Plant. Cell Environ. 29: 1430-1436, 2006. Go to original source...
  24. Locy, R.D., Wu, S-J., Bisnette, J., Barger, T.W., McNabb, D., Zik, M., Fromm, H, Singh, N.K., Cherry, J.H. (ed.): The Regulation of GABA Accumulation by Heat Stress in Arabidopsis. (NATO Science Series. Vol. 83). - Springer, Dordrecht, 2000. Go to original source...
  25. Lu, C., Zhang, J.: Effects of water stress on PS II photochemistry and its thermostability in wheat plants. - J. exp. Bot. 50: 1199-1206, 1999. Go to original source...
  26. Ludewig, F., Hüser, A., Fromm, H., Beauclair, L., Bouché, N.: Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. - PLoS. ONE 3: 1-10, 2008. Go to original source...
  27. Ma, H.: Plant reproduction: GABA gradient, guidance and growth. - Curr. Biol. 13: R834-R836, 2003. Go to original source...
  28. Masclaux-Daubresse, C., Valadier, M.H., Carrayol, E., Reisdorf-Cren, M., Hirel, B.: Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. - Plant Cell Environ. 25: 1451-1462, 2002. Go to original source...
  29. Mayer, R.R., Cherry, J.H., Rhodes, D.: Effects of heat shock on amino acid metabolism of cowpea cells. - Phytochemistry 94: 796-810, 1990. Go to original source...
  30. Mazzucotelli, E., Tartari, A., Cattivelli, L., Forlani, G.: Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. - J exp. Bot. 57: 3755-3766, 2006. Go to original source...
  31. McNeil, S., Nuccio, M., Hanson, A.: Betaines and related osmoprotectants targets for metabolic engineering of stress resistance. - Plant. Physiol. 120: 945-949, 1999. Go to original source...
  32. Michaeli, S., Fait, A., Lagora K., Nunes-Nesi, A., Grillich, N., Yellin, A., Bar, D., Khan, M., Fernie, A.R., Turano, F.J., Fromm, H.: A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. - Plant. J. 67: 485-498, 2011. Go to original source...
  33. Minocha, R., Majumdar, R., Minocha, S.C.: Polyamines and abiotic stresses in plants: a complex relationship. - Front. Plant Sci. 5: 175, 2014. Go to original source...
  34. Miyashita, Y., Good, A.G.: Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. - Plant Cell Physiol. 49: 92-102, 2008. Go to original source...
  35. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 472-497, 1962. Go to original source...
  36. Palanivelu, R., Brass, L., Edlund, A.F., Preuss, D.: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. - Cell 114: 47-59, 2003. Go to original source...
  37. Petrivalsky, M., Brauner, F., Luhova, L., Gagneul, D., Sebela, M.: Aminoaldehyde dehydrogenase activity during wound healing of mechanically injured pea seedlings. - J. Plant Physiol. 164: 1410-1418, 2007. Go to original source...
  38. Prell, J., Boesten, B., Poole, P., Priefer, U.B.: The Rhizobium leguminosarum bv. viciae VF39 gamma-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. - Microbiology 148: 615-623, 2002. Go to original source...
  39. Renault, H., Roussel, V., El-Amrani, A., Arzel, M., Renault, D., Bouchéreau, A., Deleu, C.: The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. - BMC Plant. Biol. 10: 20, 2010. Go to original source...
  40. Shelp, B.J., Bown, A., Faure, D.: Extracellular γ-aminobutyrate mediated communication between plants and other organisms. - Plant. Physiol. 142: 1350-1352, 2006. Go to original source...
  41. Shelp, B.J., Bown, A.W., McLean, M.D.: Metabolism and functions of gamma-aminobutyric acid. - Trends Plant Sci. 4: 446-452, 1999. Go to original source...
  42. Steward, G.R.: γ-Aminobutyric acid: a constituent of the potato tuber? - Science 110: 439-440, 1949.
  43. Van Cauwenberghe, O.R., Makhmoudov, A., McLean, M.D., Clark, S.M., Shelp, B.J.: Plant pyruvate-dependent gammaaminobutyrate transaminase: identification of an Arabidopsis cDNA and its expression in Escherichia coli. - Can. J. Bot. 80: 933-941, 2002. Go to original source...
  44. Xing, S.G., Jun, Y.B., Hau, Z.W., Liang, L.Y.: Higher accumulation of gamma-aminobutyric acid induced by salt stress though stimulating the activity of diamine oxidases in Glycine max (L) Merr. roots. - Plant. Physiol. Biochem. 45: 560-566, 2007. Go to original source...
  45. Yu, G., Liang, J., He, Z., Sun, M.: Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. - Chem. Biol. 13: 723-731, 2006. Go to original source...
  46. Zhang, G., Bown, A.W.: The rapid determination of gammaaminobutyric acid. - Phytochemistry 44: 1007-1009, 1997. Go to original source...