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Summary. The paper studies the domatic numbers and the total domatic numbers of
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We shall study the domatic number d(G) and the total domatic number d;(G)
of a graph G. A survey of the related theory is given in [3]. We consider finite,
undirected graphs without loops or multiple edges.

A subset D of the vertex set V(G) of a graph G is called dominating (total dom-
inating), if for each x € V(G) — D (for each z € V(G), respectively) there exists a
vertex y € D adjacent to z. A partition D of V(G) is called a domatic (total domatic)
partition of G, if each class of D is a dominating (total dominating, respectively) set.

The maximum number of classes of a domatic (total domatic) partition of V(G)
was in [1] ([2]) named the domatic (total domatic, respectively) number of G, and it is
denoted by d(G) (di(G), respectively). Note that d(G) is well-defined for every finite,
undirected graph, while d;(G) is defined only for graphs without isolated vertices.

Consider in G a vertex v of minimum valency §(G). Then a dominating set must
contain v or a neighbour of v, thus it is obvious that d(G) < §(G) + 1. A total
dominating set must contain a neighbour of v, thus d¢(G) < §(G).

We shall consider the case when a graph G is the union of two graphs G, Go
having exactly one common vertex a; this vertex a is a cut-vertex of G. The graphs
obtained from G; and G» by deleting a will be denoted respectively by G/, G5.
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Theorem 1. With the above notation, for every graph G the domatic numbers
satisfy

(1) min{d(G1),d(G2)} < d(G) <1+ min{d(G}),d(G3)}-

The gaps in the inequalities can be arbitrarily large:
(2) For any positive integer q there exists a graph G such that

d(G@) = min{d(G1),d(G2)} + q.
(3) For any positive integer q there exists a graph G such that

d(G) = min{d(G}),d(G5)} — ¢-

Proof. (1): Let dy = d(G), d2 = d(G2). Let {Dj,...,D} } be a domatic
partition of Gy with dy classes, let {D7,..., D7 } be a domatic partition of G with

ds classes. Without loss of generality assume d; < ds. Fori =1,...,d; — 1 define
d2

D; = Dj UD? and let Dy, = D} U |J Dj. The sets Dy, ..., Dy, evidently form a
i=dy

domatic partition of G and thus d(G) > d; = min{d(G1),d(G2)}.

For the right side inequality in (1) let d = d(G) and consider a domatic partition
Dy,...,D, of G; without loss of generality let a € Dy. For i = 1,...,d let D} =
D; N V(Gy),D? = D; N V(Gy). Consider D! for 1 < i < d — 1. Any vertex
x € V(G}) — D} must be adjacent to a vertex of D;; as x cannot be adjacent to
any vertex of V(G%), = necessarily is adjacent to a vertex of D} and thus D} is a
dominating set in Gf. Therefore {D{,...,D} , DL | UD.} is a domatic partition
of G| and d(G}) > d(G) — 1. Analogously d(G%) > d(G) — 1. This proves (1).

Next, we shall construct graphs demonstrating (2) and (3).

(2): Let the vertex set of Gy be V(G1) = {a,uj,...,up,1,v1,...,05, 1} The set
V(G1) — {a} induces the complete subgraph G} with 2¢q + 2 vertices. The vertex a
is adjacent to the vertices ui, ... ,uéﬂ. The graph Gs is isomorphic to G; and has
the vertex a in common with it. There exists an isomorphism ¢ of G; onto G2 such
that p(a) = a. Fori=1,...,q+ 1 denote u? = ¢(u}), v? = p(v}). The vertex a has
degree ¢+ 1 in Gy, therefore d(G1) < ¢+ 2. Consider the partition of V(G1) formed
by the sets {u;} fori =1,...,¢+1 and by the set {a,v{,...,v},,}. Thisis evidently
a domatic partition of G; with ¢ 4+ 2 classes and thus d(G1) = q¢+2 . As Gy = Gy,
also d(Gs) = ¢ + 2 = min{d(G1),d(G2)}. The vertex v} has degree 2¢ + 1 in G and
therefore d(G) < 2¢+2. Consider the partition of V(G) formed by the set {a, u}, v}},
the sets {u},v?} for i = 2,...,¢+ 1 and the sets {u?,v}} fori =1,...,q+ 1. This

1) 7 1) 7
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is a domatic partition of G with 2q + 2 classes and thus d(G) = 2¢ + 2. This implies
assertion (2).

(3): Let both G, G), be complete graphs with g + 2 vertices. Let G; be obtained
from G} by adding the vertex a and joining it by an edge to exactly one vertex of
G1; analogously let G2 be constructed. Then d(G}) = d(G%) = min{d(G}),d(G%)} =
g + 2. For G we have d(G) < 3, because the vertex a has degree 2. We can easily
construct a domatic partition of G with three classes and thus d(G) = 3. This implies
assertion (3) and Theorem 1 is proven. O

We shall now express analogous assertions for the total domatic number.

Theorem 2. With the above notation, for every graph G without isolated vertices
the total domatic numbers satisfy
(2) For any positive integer q there exists a graph G such that

di(G) = min{d,(G1),d:(G2)} + q.
(3) For any positive integer q there exists a graph G such that

di(G) = min{d(G"), d(G3)} —

Proof. (1): The proof is analogous to the proof of Theorem 1.
(2): The vertex set of Gy is
V(G1) ={a,ul, .- Up g, V1o oy Vs Wy ooy Wy s Ty e Tpyq )

The set V(G1)— {a} induces a complete bipartite graph G on the bipartition classes
{ut, ... up o, wi, o wi g b {vl, vl 2,2k ) The vertex ais adjacent to
the vertices uj,...,u},,. The graph Gs is isomorphic to G and has the vertex a in
common with it. There exists an isomorphism ¢ of G onto G such that ¢(a) = a.
For i = 1,...,q+ 1 denote u? = p(u}),v? = ¢(v}),w? = p(w}),z? = ¢(z}) and
ul, o = @(u},,). The vertex a has degree ¢ + 2 in Gl, therefore d;(G1) < ¢+ 2.
Consider the partition of V(G;) formed by the sets {u},v}} for i = 1,...,¢+ 1
and by the set {a,u} o, wi,...,wi 1, xf,..., 241} It is evident that this is a total
domatic partition of Gy with ¢ + 2 classes and thus d;(G1) = ¢ + 2. As G2 = Gy,
also d;(G2) = ¢+ 2 = min{d;(G1),d;(G2)}. The vertex w} has degree 2¢ + 2 in G,
therefore d;(G)) < 2¢ + 2.

Consider the partition of V(@) formed by the set {a, uj,v{,w?,z}, u}, o, ul 5}, the

sets {u}, v}, wi z?} fori =2,...,g+1 and the sets {u?,v?,w},z}} fori =1,...,q+1.

79 1,7
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This is a total domatic partition of G with 2¢q+ 2 classes and thus d;(G) = 2q + 2.
This implies assertion (2).

(3): The proof is analogous to the proof of Theorem 1(3); the graphs G}, G} are
complete bipartite graphs in which each bipartition class has g + 2 vertices. This
proves Theorem 2. |

Now we shall consider the case when a graph H is obtained from two disjoint
graphs Hy, Hs by joining a vertex a; of H; with a vertex as of Hy by a bridge b. By
H] we denote the graph obtained from Hj by deleting a1, by HJ, the graph obtained
from H, by deleting as .

Theorem 3. For the domatic numbers of H, H,, H, the following inequalities
hold:
min{d(H;),d(H>)} < d(H) < 1+ min{d(H;),d(Hs)}.

Proof. The proof of the first inequality is analogous to the proof of Theorem 1.
We shall prove the second inequality. Let d(H) = d and let {Dq,..., D4} be a
domatic partition of H with d classes. For i = 1,...,d let D} = D; NV (H;),D? =
D;NV(H;). Without loss of generality let a; € D;. Consider the case when ay € D;,
too. For 1 < i < d each vertex z of H; not belonging to D} is adjacent to some
vertex y of D;. If © # ay, then z is adjacent to no vertex of Hy and y € D}. If
x = ap then i # 1 and z is adjacent to exactly one vertex as of Hy and az € D%,
ie. ap ¢ D? ; the vertex z must be again adjacent to y € D}. The partition
Di,..., D] is a domatic partition of Hy and d(H;) > d(H). Now let as ¢ D1; without
loss of generality let ay € Dy. Analogously to the preceding case we prove that
D}, ..., D} _, are dominating sets in Hj; the set D} need not be, because a; may be
adjacent to only one vertex of D4, namely az, and to no vertex of D}. The partition
{D{,...,D} , D} , UD!} is a domatic partition of H; and d(H;) > d(H) — 1.
Analogously d(Hz) > d(H) — 1 and thus the assertion is proved. O

Theorem 4. For the graphs H, H,, H, in the above notation the equality
d(H) =1+ min{d(H,),d(H2)}

holds if and only if the following condition is fulfilled: For each i € {1,2} such
that d(H;) = min{d(H,),d(H;)} there exists a partition {D},...,D},  } (where
d = d(H;)) of the vertex set of H; such that D},..., D! are dominating sets in H;
and D}, is a dominating set in H/ but not in H;.

Proof. Suppose that d(H) = 1+ min{d(H;),d(Hz)}. Let i and d have the
described meaning. Consider a domatic partition {D1,...,Dgi1} of H. For each
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j=1,...,d+1let D;: = D; NV (H;). Without loss of generality let the end vertex
of b not belonging to H; be in Dyy1. Let 1 < j < d. For each vertex z € V(H;) \ D;:
there exists a vertex y € D; adjacent to it. A vertex of H; can be adjacent to no
vertex outside of H; except that end vertex of b which belongs to Dy and thus
not to D;; therefore y € D;- and all the sets Di, ... D} are dominating in H;. For
each vertex © € V(H;) \ Dle there also exists a vertex y € Dy, adjacent to it. No
vertex of Hj can be adjacent to a vertex outside of H; and thus y € D, ; the set
Dle is dominating in H}. It cannot be dominating in Hy, because then the domatic
number of H; would be d + 1.

Now suppose that the condition is fulfilled. Without loss of generality let
d(Hy) = min{d(H,),d(H;)}. Then in H; there exists a partition {Di,...,D},,}
with the described property. Choose the subscripts in such a way that a; € Di.
If d(Hy) = d(Hy), then such a partition {Df,..., D7 ;} by assumption exists also
in Hy. If d(Hy) > d(H), then there exists a domatic partition {D7,..., D3, }
of Hy. In both cases choose the subscripts in such a way that as € D?. Now
define Dy = D{ UDj ,Day1 = D}, UD}, D = D; UD3 for j =2,...,d. Then
the partition {D;,...,Dg41} is a domatic partition of H and d(H) = d+ 1 =
1+ min{d(H,),d(H>)}. O

Theorem 5. Let for the graphs H, H;, H; in the above notation the equality
d(H) = 14 d(H) hold. Then there exists a vertex of H; non-adjacent to a1 with
the property that by joining it by an edge to ai a graph H, with domatic number
d(H,) = d(Hy) + 1 is obtained from H;.

Proof. Consider the partition {Dj, ..., D}, } introduced above. Let u € D}, ;.
As D}Hl is a dominating set in H{ but not in Hy, the vertex a; is not adjacent to
u. If we join a; and w by an edge, then a; is adjacent to a vertex of Déﬂ and
D}, is dominating in the resulting graph H;. Then {D{,..., D} ,} is a domatic
partition in Hy and d(H;) = d(H;)+ 1. (As we have added only one edge, it cannot
be greater.) O

Note that the inverse assertion is not true. An example is a circuit Cy of length 4.
Its domatic number is 2, after adding one chord it is 3, but no graph having a circuit
Cy as a terminal block has domatic number greater than 2.

Theorem 6. For the total domatic numbers of H, H,, Hy the following inequal-
ities hold:

min{d, (H,),d,(Hz)} < do(H) < 1+ min{d,(H,),d,(Hs)}.

The proof is analogous to the proof of Theorem 3. O
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Before stating the next theorem, we shall express a slight modification of the
definition of a total dominating set.

Let G be a graph, and let Gy be a subgraph of G. We say that a subset D of
V(G) is total dominating for Gy, if for each vertex z € V(Gg) there exists a vertex
y € D adjacent to z.

Note that in this definition we do not suppose that D C V(Gy) but only D C V(G).

Theorem 7. If for the graphs H, H,, H, in the above notation the equality
dt(H) =1+ min{dt(Hl), dt(HQ)}

holds, then for each i € {1,2} such that d;(H;) = min{d;(H1),d;(H>)} there exists
a partition {D},...,Di |} (where d = d;(H;)) of the vertex set of H; such that
Di,...,Di are total dominating sets in H; and D 41 Is a total dominating set for
H! but not for H;.

The proof is analogous to the first part of the proof of Theorem 4.

Note that Theorem 7 differs from Theorem 4 by the fact that it is only an impli-
cation, not an equivalence. Before investigating the inverse assertion, we introduce
some notation.

If a graph H; with a vertex a; has the property that d;(H;) = d and there exists a
partition as described in Theorem 7, we say that the pair (H;, a;) is in the class x(d).
If (H;,a;) € x(d) and the described partition has the property that a; € D}, (or
a; ¢ Dj, ), we write (H;,a;) € k1(d) (or (Hj,a;) € ko(d), respectively). Obviously
ko(d) U k1(d) = k(d), note that xo(d) N k1 (d) # O may occur.

Theorem 8. Let H, H;, H> be graphs in the above notation. The equality
dt(H) =1+ min{dt(Hl), dt(HQ)}

holds if and only if at least one of the following three cases occurs:
(i) exactly one of the pairs (Hi,a1), (Hz2,a2) is in x(d) and the graph from the
other pair has total domatic number greater than d;
(ii) both the pairs (Hi,aq1), (Hz,az2) are in ko(d);
(iii) both the pairs (Hi,a1), (Hs,as) are in k1 (d).

Proof. Suppose that the above mentioned equality holds, say d;(H;) < di(H>)
and dy(H) = 1 + dy(Hy). Then by Theorem 7 (Hj,a;) € k(d). With the same
notation as in Theorem 7 we let D = {D;,...,Dy1} be a total domatic partition of
H and let D} = D; NV (H,), D} = D;NV(Hy) for j =1,...,d+ 1. The notation is
chosen such that Dc1t+1 is a total dominating set for H| but not for Hy. Then a; is
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adjacent to no vertex of Déﬂ and necessarily ay € Dg41. Hence if a; € Dc1t+1v then
a1, as belong to the same class of D; otherwise they belong to different classes.

If also (Ha,az) € k(d), then one of the classes D7,..., D3, is total dominating
for H) but not for Hy; let this class be D,% for some k, 1 <k <d+ 1. Then a; must
be in Dy. If a; € D}, then k = d + 1 and both (Hi,a1), (Hz,a2) are in ky(d). If
ay ¢ D}, ,, then k # d+1 and both (Hy,ay), (Hz,a2) are in ko(d). If (Hy,a2) ¢ k(d)
and hence by Theorem 7 d,(Hz) > d then (i) is satisfied. We have proved that one
of the cases (i), (ii), (iii) occurs.

Conversely, assume that (Hi,a1) € ko(d). Construct the described partition
{Di,...,D},,} such that a; ¢ D} ,; choose the notation so that a; € Dj. If
di(Hy) > d, choose a total domatic partition {D7,...,D3,,} of Ha; choose the
notation so that ay € D3, ;. If we define D; = Dj UD3 for j = 1,...,d +1,
then {Di,...,D4y1} is a total domatic partition of H and dy(H) = d + 1. If
(H3,az) € Ko(d), then construct the described partition {DF,..., D7, } for H, such
that ay € D}. If we put Dy = D{ UD3,,, Dgy1 = D}, UD?, D; = Dj U D3 for
j=2,...,d,then {Dy,..., Dy.1} is a total domatic partition of H and d;(H) = d+1.

Suppose (Hy,a1) € k1(d). Construct the described partition {Dj,... D}, } such
that ay € D} ; if d;(Hz) > d, choose a total domatic partition {D7,..., D7, } of
Hy; again choose the notation so that ay € D7,,. If we define D; = D} U D5 for
j=1,...,d+1, then {Dy,...,D4y1} is a total domatic partition of H and d;(H) =
d+1. If (Hs,az2) € k1(d), then construct the described partition {D7,..., D3, } for
H, such that ay € D7 ;. Now we define again D; = D} U D3, and {Dy,...,Day1}
is a total domatic partition of H and d;(H) = d 4+ 1. This proves Theorem 8. O

A vertex z of the graph G is called saturated, if it is adjacent to all other vertices

of G.

Theorem 9. Let for the graphs H, Hy, Hy in the above notation the equality
di(H) =14 di(H;) hold. If a; is not saturated in H;, then there exists a vertex of
H, non-adjacent to ay with the property that by joining it by an edge to a; a graph
H, with total domatic number dt(ﬁl) = d;(H;) + 1 is obtained from H;.

The proof is analogous to the proof of Theorem 5. If a; is saturated in Hy, then
the unique subset of V/(H;) which is total dominating for H; but not for H; can be
only the set {a;} and thus D},, = {a;} and D}, , NV (H]) = 0.

At the end of the paper we shall prove a theorem on circuits. Let C,, be the circuit
of length n. Its vertices will be denoted by wq,...,u, so that the edges of C,, are
(uj,uipr) for i = 1,...,n — 1 and (un,u1). It is known (cf. [2]) that d¢(C,) = 2 if
and only if n =0 (mod 4); otherwise d;(C,,) = 1. O
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In the following theorem the circuit C), will be considered as a graph H; or Hy in
the notation introduced above; in this sense we shall write the pair (Cy,a) and the
classes k(1), ko(1) and k1(1).

Theorem 10. Let C,, be a circuit of length n # 0 (mod 4), let a be an arbitrary
vertex of C,,. Then
(1) (Cpya) € K1(1) \ ko(1) for n =3 (mod 4);
(2) (Cn,a) € Ko(1) \ k1 (1) for n =1 (mod 4);
(3) (Ch,a) ¢ k(1) for n =2 (mod 4).

Proof. Without loss of generality put @ = u,. Suppose that (C,,a) € k(1).
Then there exists a partition {D;, Dy} of V(C),) such that D; is a total dominating
set in C), and D5 is total dominating for the path obtained from C,, by deletion of
Uy, but not for C,,. None of the vertices adjacent to u, belongs to Ds, therefore
u; € Dy, tun—1 € Dy. Suppose that (Cp,a) € ko(1), i.e. u,, € Dy. Each vertex
of C,, distinct from wu, must be adjacent to a vertex of D; and to a vertex of Ds.
As u, € Dy, uy € Dy, we have u; € Dy for ¢ = 2 (mod 4) or ¢ = 3 (mod 4) and
u; € Dy for i =0 (mod 4) or i =1 (mod 4); in all cases ¢ # n. But as was mentioned
above, u,_1 € Dy. This is possible only if n —1 =0 (mod 4) or n — 1 =1 (mod 4),
ie,if n =1 (mod4) or n =2 (mod 4). If n = 2 (mod 4), then also u,_5 € Dy
and u, 1 is adjacent to two vertices u, o and u, of Dj; this is a contradiction.
Therefore (C,a) € ko(1) implies n = 1 (mod 4), and conversely for n = 1 (mod 4)
the described partition exists so that (C,,a) € ko(1).

Next, assume that (C,,a) € k1(1), i.e. up, € Dy. Then u; € Dy for i =1 (mod 4)
or i = 2 (mod 4) and u; € Dy for ¢ = 0 (mod 4) or ¢ = 3 (mod 4) again for all
i # n. We have u,_; € D; and thus n —1 =1 (mod 4) or n —1 = 2 (mod 4),
ie. n =2 (mod 4) or n =3 (mod 4). If n =2 (mod 4), then u,—» € Dy and u,_1
is adjacent to two vertices u,_» and wu, of Ds; this is a contradiction. Therefore
(cn,a) € k1(1) implies that n = 3 (mod 4), and conversely for n = 3 (mod 4) the
described partition exists and (C,,a) € k1(1). We have proved that (C),,a) € k(1)
if and only if n =1 (mod 4) and (Cy,a) € k1(1) if and only if n =3 (mod 4). This
proves Theorem 10. a

We are now able to illustrate Theorem 8 by Figures 1-5 below.

In Fig. 1 we see a graph H with Hy & Hy = (5, in Fig. 2 with H; & H, = Cf.
The set Dy (or Dy) is the set of all vertices labelled by 1 (or 2, respectively). From
Theorems 8 and 10 we see that d;(H) = 2 in both cases. In Fig. 3 there is a graph H
and H; 2 C5, Hy = Cr; its total domatic number is 1. Figures 4 and 5 demonstrate
(i) and (iii) in Theorem 8 for a graph H with (Hy,a1) € ko(1) Nk1(1). Here Hy is
a Cy, one vertex of which is joined to a new vertex, a;.
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