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GEOMETRY OF SECOND-ORDER CONNECTIONS AND
ORDINARY DIFFERENTIAL EQUATIONS
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Summary. The geometry of second-order systems of ordinary differential equations rep-
resented by 2-connections on the trivial bundle pr; : R x M — R is studied. The formalism
used, being completely utilizable within the framework of more general situations (partial
equations), turns out to be of interest in confrontation with a traditional approach (semis-
prays), moreover, it amounts to certain new ideas and results. The paper is aimed at
discussion on the interrelations between all types of connections having to do with integral
sections (geodesics), integrals and symmetries of the equations studied.
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1. INTRODUCTION

The goal of the paper is to direct the attention to some less traditional aspects and
points of view applicable to the geometry of first and second-order systems of ordinary
differential equations represented by connections on the tangent bundle 7ys: TM —
M in the autonomous situation, and mainly on the trivial bundle pr; : Rx M — R in
the time-dependent case. The equations for integral sections of connections (i.e. the
equations solved with respect to the highest derivatives or the Pfaffian systems of
‘horizontal form’) do not represent the most general situation, nevertheless, their
role e.g. in both the autonomous and the nonautonomous mechanics is well-known.
Consequently, the investigation of generators of such equations, called semisprays
(or second-order differential equation fields) is very extensive (cf. [6] and references
therein). The methods and ideas used are closely related to particular properties of
tangent bundles and the underlying canonical structures and morphisms. It appears
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that the absence of such tools in the general situation on fibered manifolds calls for
the application of a more general approach, the most characteristic feature of which
is the change

semispray ~+  2-connection = semispray distribution

[25], [27]. This change causes the assistance of deep theories acting on fibered mani-
folds — the theory of differential equations (e.g. [22], [26] and references therein) and
the theory of connections (e.g. [14], [19], [20], [25] and references therein). Both the-
ories integrated additionally by the theory of natural operations (e.g. [14], [15] and
references therein) admit a transparent description of the geometry of the systems
studied, even for the case of partial differential equations or in higher-order theories;
we refer to [8], [9], [17], [28], [30], [31] for details.

The paper represents an attempt at the illustration of this approach in the partic-
ular situation of the trivial bundle pr; : R x M — R, where the developed formalism
meets canonical tangent and related structures, hence it can stand for certain dif-
ferent points of view to the traditional results. Moreover, some new results and
motivations appear, as well, whose possible areas of application could be for exam-
ple the theory of wvariational equations (e.g. [11], [16], [18]) and the formalism of
differential forms along a map [24]. In addition, the role of connections on pr, omy o:
R x TM — M, studied e.g. in [1], appears to be of interest and a discussion of this
topic will be presented in a forthcoming paper.

All notions and results of the paper are presented in the form with the ambition for
the work to be more or less self-contained; by F(X) we mean the module of smooth
functions on X, all manifolds and maps are smooth and the standard summation
convention is used.

2. CONNECTIONS ON 7ps: TM — M

Let M be an n-dimensional manifold, 75;: TM — M its tangent bundle. Denote
by (x%) or (x%, %) local coordinates on M or the induced fibered coordinates on TM,
respectively. The corresponding fibered coordinates on the first jet prolongation
Jrar of Ty which is the set of 1-jets of local vector fields on M will be (z¢, %, x;),
ie. for v = v'0/dx', v = i’ o v, we have &% o j'v = 9v’/dx7. Recall that (1)1
JiTyr — M is again a vector bundle while according to the general theory of fibered
manifolds, (7as)1,0: J'1y — TM is an affine bundle modelled on the vector bundle

(2.1) V,, TM & T*M — TM,
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where V,,,TM = span{0/0i'} is a subbundle of 7)/-vertical vectors from TTM
(note that T*M should be considered pulled-back by 757). The sections of (2.1) are
called soldering forms on 7)r; the local expression of any such vertical tangent valued
1-form (or equivalently a (1,1)-tensor field on M or an endomorphism on TM) is

(0

(2.2) Y=g ® dx’.
There is a canonical basic soldering form

(0

J =4; ErS ® da’

on Ty, called an almost tangent structure on T M, which finds wide application in
the tangent bundle geometry realizing e.g. the vertical lift of vectors from TM to
TTM.

A (generally nonlinear) connection on Ty is a section A: TM — J'7as of (Tar)1,0-
Local equations of A are a;; oA = A;-(a:k,dck), where A;- are the components of A
transformed like the coordinates :

pafi% ozt 8%z .

A =M om ~ ot e

It is easy to see that A can be identified in particular with the tangent valued 1-form
ha: TM — TTM ® T*M, called a horizontal form of A. Locally, hy = Dp; ® dz?,
where

0 ;0
Dp; = - 3—7
ox? oI
for ¢ = 1,...,n, is the i-th absolute derivative with respect to A. As hy creates a

splitting of the canonical exact sequence
0=V, TM —-TTM - TM xpy TM — 0

and thus it realizes a horizontal lift of vectors, a connection A on 7, is identified
with the decomposition TTM =V, ,TM & H, with the horizontal subbundle Hy =
span{Dy;}. The complementary projection vy = I — hy on TTM is called the
vertical form of A.

The structure of (75)1,0 implies the meaning of soldering forms on 7); as deforma-
tions of connections on 7,,; namely, for each pair Ay, Ay of connections, ¢ = hy, —ha,
is a soldering form, and conversely, for A being a connection and ¢ a soldering form,
ha + ¢ is a horizontal form of a connection.
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A connection A on 7y represents a (generally nonlinear) first-order system of
partial differential equations. A global (or coordinate-free) expression is given by
the submanifold Im(A) C J'7)s, while the coordinate expression is

o' i
_ — Aj(a;k, vk(xz))

for the unknown family of functions v*. The integral sections of A are thus (local)
vector fields v on M satisfying j'v = A o v on its domain. Evidently, an equivalent
condition for v to be an integral section of A is to be an integral mapping of the
corresponding horizontal distribution Hj, which can be expressed by the condition
Tv € Hy. By

.1 .
M 25 Jiry = Ty o TM 'S oy xooar T — Vi, TM @ TM,

the covariant derivative Vyv of a vector field v with respect to A is defined. In view
of

Vav = (% —A;. ov) % ® dat,
the integral sections of A are vector fields parallel with respect to A, which means
Vav = 0. In this arrangement, the integrability of A means that there is a uniquely
determined maximal vector field v on M passing through each point of TM being
an integral section of A. Equivalent conditions are e.g. both the integrability of H
and the vanishing of the tangent valued 2-form

1
Ry = 5[hA, hal: TM — V,,, TM ® A*T*M

called the curvature of A, which locally means

OANF  OAF ONY ANk .
227 T 5t fz 8; +8—iiAf for any i,7,k=1,...,n.

Let ¢ be a soldering form (2.2) on 7as. The ¢-torsion T, is another important
notion closely related to a connection A on 7y, defined again to be a tangent valued
2-form

To = [ha,@]: TM — V,,, TM @ A*T*M.

Using a natural choice ¢ = J, the corresponding J-torsion will be briefly called a
torsion T of A. Locally,

B AL D
- 0xd o

T ® dz’/ A dz*.
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There is a bijective correspondence between the connections on 7y, and the endo-
morphisms on T'M satisfying JG = J, GJ = —J, called Grifone connections. The
identification is expressed by Gy = 2hp — I and a distinguished soldering form #,
called the tension of A, is defined by

1
H= §ECGA,

where C' = i'0/0i" is the Liouville vector field on TM and L is the Lie derivative.
Locally,

(2.3) H= <%ik - A) 92 ® dx’

' ok 7] ot '

It appears that the above situation represents a natural generalization of the clas-
sical one concerning linear connections on M. An additional requirement for A to
realize a vector bundle morphism between 7, and (757); over M implies the linearity
of A} in &%, ie. Ai(zf ") = —A}, (2°)&", where the functions A%, are the classical
Christoffels. By (2.3), this condition is equivalent to £ = 0. More generally, if H is
basic, then evidently A is affine.

The geodesics of a connection A on 7); are the curves ¢: R O J — M whose
tangent vector field ¢: J — TM along c is parallel with respect to A, which means
¢ € Hy. Locally, this condition is represented by a (generally again nonlinear) system
of second-order differential equations (ODE) for ¢’ = z% o c:

d?¢t . dcF\ ded
2.4 T O
24) a <C ’ dt) dt

Clearly, if v is an integral section of A then each integral curve ¢ of v is a geodesic
of A. Accordingly, for A being integrable (recall that under the condition Ry = 0,
A is more traditionally called flat), the second-order system (2.4) is reduced to the
first-order system dc’/dt = v(cF) on a certain neighbourhood of each point from
TM.

For a more detailed discussion on the above concepts and for the relations to the
classical theory of linear connections we refer to [14], [20], [25] and [6].
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3. SEMISPRAYS ON T'M AND CONNECTIONS ON Tps

When speaking of the second-order tangent bundle, we bear an (embedded) sub-
manifold T?°M C TTM of those tangent vectors from TTM for which the bundle
projections T'tys and 77y, coincide, in mind. Local fibered coordinates on T2M are
(z, 4%, &%), where briefly ' = di?/dt = d*z?/ dt?. A semispray on TM is a (global)
section w of Tf/}l = 71rm|rea s T2M — TM, i.e. a vector field on T M of the particular
type

9 o

(3.1) w=1t"— +w'(z,2)
x

An essential property of a semispray is that of its integral curves ¢c: R D J — TM,

(3.2) c=Trpo0¢.

Consistently, a curve ¢: R D J — M is called a geodesic of a semispray w if ¢:
J — T'M is an integral curve of w. Relative to (3.2), the geodesics satisfy T'mps0é = ¢

d’ct o, dc
=w' (", — ),
de? dt
which corresponds to an alternative name for semisprays: second-order differential

equation fields (SODE).
A semispray w on TM is called a spray if w = [C,w], which means that the

and the equations for them are

components w* of w are functions homogeneous of order two in &*, i.e.

ow' . )
o i
8:i7jx = 2w".

There is a uniquely determined (global) semispray wy on T'M associated to a
connection A on 7y, which is a spray in the case of A linear. Globally it can be
defined as a generator of the one-dimensional distribution H,, = Hy N T?M, which
locally gives

.0 ;.. 0
= "L_ l-.]
(3.3) wa =& o +Ad 5

and consequently A and wp have the same geodesics.
Moreover, the integral sections of A can be thus equivalently defined as vector
fields on T'M such that wp ov=Tvov.
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Conversely, if w is a semispray on T'M, one might ask for connections on 7y
associated to w. It turns out (e.g. [2], [3], [5], [10]) that

1

(3.4) ha 5

(Itrym — L)
is a horizontal form of a canonically determined connection A with the components

. low
A= 55a

Obviously, A is torsion free but generally it is not associated to w except for w being
a spray. If this is the case, A is linear with a zero strong torsion 7T, which is a
soldering form

T =i,T —H,
locally expressed by
_(ni_ OAL ) 0 :
7= <Aj_ o " ) oz © 47

where H and 7 are the tension and the torsion of A, and w is an arbitrary semispray
on TM. Tt is worth mentioning here that all first-order natural operators trans-
forming semisprays on T'M into connections on 73; form a one-parameter family
expressed by ha + kJ, where k € R and hy is given by (3.4) (see [4] or [14]), which
corresponds to the fact that J is the only natural soldering form on 7.

Both the necessary and the sufficient form of deformations of (3.1) for the obtained
connection to be associated to the given w, and the role of the strong torsion in the
previous considerations are described in the so-called Decomposition Theorem [6]:
for any semispray w on T'M and a soldering form ¢ on 73, such that

(3.5) 2ipp = w — [C,w],

there exists a unique connection A on 7, whose associated semispray is w and its
strong torsion 7~ = 2¢; this connection is given by

1

ha 5

(rrm — Lod) + .

For a related discussion of the material we refer to Sec. 6; it should be noticed
here that the distinguished role of sprays in the above considerations can be seen
e.g. from the local expression of (3.5):
10wt j

L R R
(3.6) pial = w' = oo dl
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Notice the role played by the relationships between semisprays on T'M and connec-
tions on 7y in the theory of derivations of forms (even vector valued) along 7,7, (see
[21] and references therein). In this situation, a semispray w is combined with the
prolonged objects studied and the connection (3.4) coming from w is used essentially,
as well.

4. FIRST AND SECOND-ORDER CONNECTIONS ON pr; : R x M — R

Let now M be an m-dimensional manifold with local coordinates redenoted (for
some technical reasons) to (¢”) on M and (q",qg’l)) on TM. Fibered coordinates
on the total space Y = R x M of the trivial bundle 7 := pr; : R x M — R are
consequently (t,¢) with (¢) being a global canonical coordinate on R. Local sections
of 7 are evidently of the form v = (idg,c), where ¢ is a curve in M. By jivy
¢(0), where ~ is an arbitrary section of 7 on a neighbourhood of zero, a canonical
isomorphism Jim = TM is realized. Analogously, by jiv — (t,¢(t)) one gets the
well-known isomorphism J'7 = R x TM. This implies that in contradistinction to
the general situation where m : JIm — Y is an affine bundle,

7T170%Jid[R XTMh . RxTM—RxM
is now a vector bundle with fibres T, M over (¢,z). Another useful identification
(4.1) J'r=2VY

of R x TM with the submanifold VY C T(R x M) of m-vertical vector fields on
R x M is given by jivy +— 4(t), and locally by £ = 1.

In this arrangement, a (first-order) connection on , i.e. a section I': Y — Jlm,
can be identified with a m-vertical vector field

oy 2 9
(4.2) v=T7(t,q )8—(]"
on R x M, which is equivalently a vector field along pr, : R x M — M called a
time-dependent vector field on M. The one-dimensional m-horizontal distribution
Hy C TY defining the decomposition TY = Hp @ V.Y, is thus generated by the
absolute derivative Dr with respect to I', Dp = 8/0t + v, where Dr = D oI" with
D = 9/ot + qE’l)f)/f)q” is the formal derivative (a vector field along m o). The
horizontal form of T' is a tangent valued 1-form hp = Dr ® dt while vp = Iy — hp
is the wvertical form of T'.
The integral sections of I' are the sections v of 7 satisfying j'v = I" o v on its
domain. In terms of the above identifications, integral sections of I" are the ‘graphs’
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of integral curves of v (4.2), i.e. v = (idg, ¢) such that v oy = ¢. The corresponding
first-order system of ODE reads

dc?

(4.3) —

=T7(t,cM).

In general, the equations (4.3) are globally represented by a submanifold I'(R x M) C
R x TM; in particular, in case that v does not depend on ¢, this submanifold is
RxImvCRxTM.

If we are interested in the structure of some other prolongations of fibrations under
consideration we find that for m: R x TM — R we have

Jim 2 RxTTM and J*7m =R xT?M,

where the additional induced coordinates on the first prolongation J'm; of m; or
on the second prolongation J2m of 7 are denoted by q"’,(jf’l) or q&y respectively.
Moreover, evidently T?M = JZm and also for 7 -vertical vectors on R x TM we have
Ve, JIm 2 RxTTM C T(R x TM); it is important to note that R x TT'M is a total
space of (idg X7737) in the above identifications. On the other hand, by (4.1) we
have J'(ro1y|v,y) = Jim = R x TTM, however, now the presented fibration over
R x TM is (idg xT,,) and accordingly the realization of the isomorphism

(44) Jl(ﬂ'OTy|V"y)%JV7T1J17T

calls for the canonical involution sy : TTM — TTM (see [6], [14] etc.) by (idg, £ar)-
A second-order connection (briefly a 2-connection) on 7 is in accordance with [19],
[25] a section T'®) of 7y, : J2m — J'7r, which means

I RxTM — R x T2M

in the situation studied. Any 2-connection I'® on 7 is equivalently characterized
by its horizontal form hpe = Dpe) ® dt, where the absolute derivative Drp(2) with

respect to I'?)
0 0

= g — 4 T° 9
ot q(l) 8qo'

Dr2y = (2)%

is a semispray on R x TM where its alternative name semispray connection comes
from. Again, Dp2) = D oT'®), where the formal derivative D = /0t + q()0/0q° +
qg;)a/ qf’l) is now a vector field along m ;. Thus, I'® can be identified with a one-
dimensional m-horizontal distribution Hyy = Im hp(2), realizing a decomposition
TJ'nm = Hpe @ VmJlﬂ; recall that evidently Hpe C Cr,,, where Cr, , is a
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canonical Cartan distribution on J'm, and that the soldering forms on 7 realiz-
ing the deformations of 2-connections on 7 are the sections of the vector bundle

Vi o' @ i (T*R) — J'mr, associated to m 1, locally expressed by

0
(2) _ o
[%2) = ‘»0(2) p ® dt.
9471

Due to the previous considerations, D) and thus I'®) itself can be represented
by the (generally time-dependent) semispray

(4.5) w = qa)a%f + T3, (t,g*,qg))%
on T'M, which can be viewed as a vector field along pry, : R x TM — TM. Clearly,
the autonomous situation (denoted here by w = w(qk,qg‘l))) means that (4.5) is an
ordinary semispray on TM in the sense of Sec. 3.

The integral sections of T'®) are the sections v of 7 such that j2y = I'® o jl~,
hence they are the ‘graphs’ of geodesics of w from (4.5) which means v = (idg, ¢)
such that wojly = é. Consequently, the corresponding second-order system of ODE,
represented by T (R x TM) C R x T?M, is

d*c” - , det
—dtQ = ]_—‘(2) <t,C ’E) .

Recall that both for I and for I'®)| the integral sections coincide with the maximal
integral mappings of the corresponding horizontal distributions.

The following ideas will appear to be profitable in Sec. 7.

Let I': Y — J'7 be a connection on 7. Using the vertical functor V one gets the
mapping VI': VY — V., Jin ie. VI: R x TM — R x TTM. With regard to (4.4)

VI = (id[R, K,M) o VT

is the so-called vertical prolongation of I' realizing the only connection on ¢ := mo7y :
VY — R naturally generated by I' [13], [14]. In fact, in view of (4.1), VI' is a
connection on 7 : R x TM — R, locally

o oy VL o o po L7
(t.qa%,q0)) — (t,q 2401y, T ;8—qA(J(A1)> .
In particular, for time-independent v in (4.1) one gets VI' = (idg, Tv) and

VI = (idg, v°),
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where v° is the complete lift of v (see e.g. [6]).

Applying analogous ideas and isomorphisms J2m = R x T?TM together with
the canonical involution /{S\?: T?TM — TT?M we obtain the vertical prolongation
VI : Jlr, — J%7 as a naturally determined 2-connection on 7;; in coordinates

yre 3FE’2) A

o o o T o,
(t’qa’qul)’qo"qul)) — (tqo—aqgl)aq ’q(l)’F(Q)’a—(fq + 8(](;1)) Q(>\1)> .

5. CONNECTIONS ON 7 o: R xTM — R x M

The first jet prolongation J'm; o of 7 o is the manifold of 1-jets of (local) connec-
tions on 7 with fibered coordinates (¢, ¢, q(1y> 27 z3), where

o ore or ore
23,0 = 3w, 26,0 = o (y).

Since our particular concern in this paper is with the relations between autonomous
and time-dependent situations, the following fact appears to be of importance. An
immediate verification shows that there is a canonical inclusion

(5.1) R x Jimy < Jlmig

over J'm = R x TM. For any pair (t,j,v) € R x J'7ys we have s(t, jzv) = j{, T,
where I and v are identified by (4.2). Local equations for »(R x J'1p) C Jtm o are
thus

(5.2) 27 =0.

—_

A connection on T is a section E: J'r — Jmo. The horizontal form of E is
hz = D=o ® dt + Dz, ® dg”, where the absolute derivatives

are the generators of the 7 g-horizontal (m+1)-dimensional distribution Hz realizing
a decomposition TJ'm = Hz & V,, ,J'w. Notice that evidently

Ve J'm 2 R x V,,, TM.
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The integral sections of a connection Z on m ¢ are (local) connections on 7 satisfying
j'T' = EoT, which locally means a first-order system of PDE of the form

ore ore
= 27(t,¢%,T?
ot ( yq~ )7 8(])‘

(5.3) = E(t, q% ),
where =7, 5 are the components of Z.

Following (5.2), any connection A on 7); can be considered as a connection on g
of the particular type

(5.4) E = (idg,A): R x TM — (R x J'11),

whose components are 27 = 0, 2§ = A{(¢® ,q(gl)). The corresponding horizontal
form is now

ot og* 0q?,

0 0 0
hE:—®dt+<—+A§—>®quzIT[R+hA7
(1)

and the integral sections can be identified with vector fields on M (cf. Sec. 2).
The deformations of connections on m; ¢ are soldering forms on m o, i.e. the sec-

tions
o: J'n =V, Jr @i o(T°Y)

of the vector bundle associated to (w1 0)1,0: J 71,0 = J; locally

8 [en o
(5.5) Y= ng) & (QD dt + ¢ qu) .

By [7], all natural soldering forms on 7 o are of the form
(56) kiJ+ kC® dt, ki, ko EF(R)
and the key-role played by

S=J-C®dt

will become apparent below.
According to [20], for any soldering form ¢ (5.5) the @-torsion of the connection
E on 7y is defined by
To = hz, @)

For ¢ = S the corresponding S-torsion will be called a torsion, locally

o
=7 9

- Oqpy Oqpy

(1]

=7 =7\ 9
(5.7) T ® dg” A dq*+< E—r ——)—0®th dg*.
dapyy " Bay ) Oap,
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Evidently, for = given by (5.4) we can see that the torsions of E and A coincide if
and only if A is linear.

Let ¢ be an arbitrary semispray on R x T'M. Then i 7T is a soldering form on m o,
locally expressed by

0=7 0=%

58) icT = | 2—a% + —2q'1 a0y — E5qy | == ® dt
( ) ¢ (8(](1/1) (1) 8(](1/1) (1)4(1) A4(1) 9q°

+ o 855 qu 850— 8 ® dq)\
_4)\ - e — —D' .
dapyy " 0ayyy ) Oapy)

The tension of a connection = on 7 ¢ can be defined as a soldering form

H=Lchs

locally expressed by

= 9 O=7 )
5.9 H=|—0qly —Z7 | — @ dt + Agv, — B9 ® dg’.
o (W (1) ) 94y (8‘1(”1) W) o

By means of H the family of linear connections on the vector bundle m o can
be characterized; namely, = is linear if and only if its tension vanishes, which by
(5.9) means 27 = W](t,q%)q(;y, E5 = ¥, (£ ¢%)q, with U7 = 0E7/dq(;) and
U3, = 0=5/0qf),. Globally, =: J'm — J'm o is a linear fibered morphism between
71,0 and (71 o)1 over Y. In particular, any linear connection A on 7y, defines a linear
connection Z on m o by (5.4), i.e. ¥, = AJ,.

According to the results of [8], there is a unique natural transformation of J'm; o
into J'm; (in fact, into J2m) over J'm, which is of the form

AT JYT,ids) 0 T(y),

where J1(T',idr) means the first jet prolongation of the morphism I' over R. Equiv-
alently,

) fo. .

I S
where v is the maximal integral section of T' passing through y = (¢, ). In coordinates

(5.10) gy ofo =27 + zgqg‘l) .

In particular, due to (5.1) the only natural transformation £/ of J'7), into T?M
over T'M is determined as

q, £
jpov—Tvow
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and presented here in the notation of Sections 2, 3: #'of} = :c;a:J As an immediate
consequence, there is a unique naturally determined 2-connection I'?) = £, o Z for
any connection = on i g, called characteristic to =, whose components are

(5.11) f) = E7 +EXqyy-

Evidently, the generator Dr(2 of the characteristic distribution Hp(») is just the
semispray associated to E (cf. [6]). In particular, (5.11) implies (3.3).

The relationship between = on m; o and its characteristic 2-connection I'® on 7 is
based on the essential property of the corresponding horizontal distributions which
reads Hpe C Hg. This ‘horizontal’ considerations lead to a description of some
indirect integration methods for the connections studied (we refer to [17] for full
details).

First, the integral sections of = are foliated (and thus can be ‘glued together’)
by the integral manifolds of Hp(z), called characteristics, which are just the first
jet prolongations of the integral sections of I'®). Secondly, if T is a (local) integral
section of = then

(5.12) JHT,idp) ol =T@ 0T

on the domain of T'; in other words, I" represents a (local) first-order system whose
prolongation is just T?). According to [17], any integral section T' of Z is a field of
geodesics of the characteristic I'®) which means in case of Z integrable (see Sec. 6)
that each integral section of T'® is locally an integral section of a certain integral
section I' of Z. Roughly speaking, a second-order problem for geodesics of I'(?) can
be reduced to a first-order problem for integral sections of =. In the autonomous
situation (5.4) the fields of geodesics are exactly the vector fields parallel to A; in
fact, (5.12) reads Tvov = wy o v.

The geometry of connections on g is rich in structures related, the above ‘hori-
zontal” ideas can be supplemented by some ‘vertical’ ones. While the above consid-
erations had to do with integral sections themselves, the following ones are closely
related to the infinitesimal symmetries (cf. Sec. 7).

By [31], any connection = on 7 can be identified with an f(3, —1)-structure
Fz = 2hg — hp2) — I of rank 2m on Jim, where I'® is the characteristic connection
and F2 = vp). The eigenspaces of Fz are generated by the projections

1 1
I —F2=hpo, §(F52+F5)=h5—hp(2), §(F52—F5)=vg,

hence the decomposition of T'J'7 generated by Z through Fx is

TJl’/T = Vﬂ-l‘OJlT(' EB HFE EB HF(Q).

158



The m-dimensional Hgr, = Im(hg — hp») = span{D=z,} is in accordance with [6]
called strong horizontal, which means

Ve ot @ Hpe = Vi, Jh

Evidently
HF: =1Im hE

i o(VaY)?

where hz is now regarded as a horizontal lift 77 o(TY) — TJ'm (rather than the
projector on T'J'), which corresponds to the autonomous situation (5.4), where
Hp_ coincides with Hy.

Notice finally that in terms of the characteristic connection, (5.8) can be rewritten

to
orv. o orv. 9
. =0 (2) X o =0 (2) A
] = (22 S —2I — ® dt 229 — d
i} ( + 8q()\1) q(l) (2)) 8(]6) ® + ( A 8q()\1) )8(]6) ® dq”,

which becomes important below.

6. INTEGRALS OF 2-CONNECTIONS

As already announced, the search for integrable connections on m; ¢ with a com-
mon characteristic 2-connection on 7 might be of interest for the integration of the
corresponding second-order ODE system. In this respect, if I'?) is a 2-connection on
m then any = on 7 o whose characteristic connection is I'® will be called associated
to I'® and each integrable Z associated to I'®) will be called an integral of I'?).

First we recall a local result of [17]. Suppose we are given a system {a!,...,a™}
of independent first integrals of Hp on some open W C Jim, W C Wi(l)(V), where
(V,9) is a fibered chart on Y. If in these coordinates det(@a"/@qz\l)) # 0 on W,
then by Hz = Anih{da',..., da™} an integral Z on I'® on W is defined whose
components are

where (A7) is the inverse matrix to (Ag) = (aa"/aqa)).

In case of global integrals, the task splits into two parts; first, global connections on
1,0 associated to I'® must be determined and secondly, their integrability should
be studied. In what follows we proceed analogously to [9]. We have to start with a
natural vector bundle morphism

fo: Vo, J'm@m o(T*Y) = Vi, J'mr @71 o(T*R)

159



over J'm induced by (5.10) on the associated vector bundles. This morphism maps
deformations of connections on 7 o to deformations of 2-connections on =; in coor-
dinates

(6.1) 0l o fo = ¢7 + Pl qyy-

If 5y is a connection on m; ¢ associated to I'® then evidently by hz, + ¢ another

such connection is defined if and only if
(6.2) ¢ € ker fo,

and any soldering form ¢ on 7 ¢ satisfying (6.2) will be called admissible. Due to
(5.6), all natural admissible soldering forms on 7 o are of the form ¢ = kS, k € F(R).
According to [6],

(6.3) hz, =

=0

(hrm +1-— ['DF(z) S)

N =

is a horizontal form of a connection =y on 7 ¢ associated to r@, Following the
above ideas we can state that the family of connections on 7, o naturally associated
to a 2-connection I'®) on = is defined by

(6.4) h

0
I
>
m
_|_
>
n
B
m
)
—
\._/

In coordinates, the components of = are

ar.

1%
A
2 8(](1)

(1]

(6.5) + k()5S BT =TP) — g

o _
=

This result can be compared with [30] and [9]; in fact, if we view K*(¢) = 2k(¢) as a
component of a linear connection K* on 7, it is easy to verify that the connection
(6.4) coincides with the so-called natural dynamical connection of type 2 [30] for any
volume form € on R which is a (global) integral section of K*. Moreover, denoting
by K the dual connection to K* on 7 (i.e. K(t) = —K*(t)), we get (6.4) as the only
connection naturally assigned to the pair I'®), K in the sense of [9].

Next, the role of torsions and related structures can be discussed. Denote by 7o
and Ho the torsion and the tension of the connection =y given by (6.3). By (5.7),
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(5.8) and (5.9) one gets

(2) v A
To= ———"— ® dg” A dg” =0,
079 8q(1)8q 8q(1)

ore. 1 0°I o
(2) x o (2) A v
Ho = —T) — s =5 —— @ dt
0 < o, Jm T T g 5@)8%)‘1(1)%1)) o ”

270
1 < 0°Tl) i - 3F(2)> PN
2\ 9¢),0h, " 0q), ) 9dfy,

Let now ¢ be an arbitrary admissible soldering form on 7 . Then for the con-
nection = on m; o defined by

(6.6) hz =hz, +¢

U]

we have T = To + [, S], icT = 2¢, H = Ho + Lcp. Hence, the following assertion
holds.

Proposition 6.1. Let I'®) be a 2-connection on 7 and ¢ an admissible soldering
form on m . Then there is a unique connection Z on m; o associated to I'® such
that its torsion T satisfies i;T = 2¢.

By (6.6), this connection is defined just by

1
h= = 3 (hp(z) +I— EDF(Q)S) + .

Now it is easy to see that if the torsion of a connection = on 7 ¢ vanishes, then
2 =E, for I'® being the characteristic connection to Z.

Let now w = aq 8/8(] + w7 (g, qé’l))a/aqf’l) be a semispray on TM and Dype) =
d/0t + w a semispray on R x TM defining a 2-connection I'®) on 7. Following the
above approach, a search for a connection A on 7); associated to w is equivalent to
a search for a connection Z of type (5.4) associated to I'®). From (6.6) we easily
deduce that ¢ must satisfy

10w

o A w®

¥ 2 8q>‘ 90y —

or equivalently
1 ow”
o A o A
iy ="~ 5 g9

which coincides with (3.6).
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Following [29], certain ‘homogeneous’ considerations can be presented. First, in
accordance with the autonomous situation and due to the underlying structures, a
spray connection on w can be defined as a 2-connection I'® on 7 whose components
are homogeneous of order two in q(kl), ie.

ore.
(2 _ oo

€]

Throughout the paper, the smoothness on the zero section is assumed, hence (6.7)

means that the functions I‘E’Q) are quadratic in q(>\1):

270
Iy = CRAICH a0 ()
A v .
204030471
It is easy to verify that if = is linear then its characteristic ') is a spray connection
if and only if 2 = 0 and conversely, the connection (6.3) associated to a spray
connection is linear with

oo g L PTh
’ Av 9 8(]?1)8(]%/1) .

[1]
|

Consequently, if T'?) is a spray connection on 7 then (6.3) is the unique linear
connection on 7y o associated to r@,

The integrability of a connection on an arbitrary fibered manifold (and thus of the
corresponding equations) means equivalently the involutiveness of the corresponding
horizontal distribution. Accordingly , the integrability conditions can be expressed
among other by the vanishing of the Lie bracket of the absolute derivatives with
respect to the connection. For a connection = on 7 o it means

[D=zo, D=»] =
(6.9) [Dzo, Dzy] = 0.
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7. SYMMETRIES

In what follows we deal with (infinitesimal) symmetries of the ODE studied,
i.e. with vector fields as generators of groups of transformations invariant with re-
spect to solutions. For the general case of PDE represented by connections we refer
to [31] and references therein.

An (infinitesimal) symmetry of a connection I" on 7 (or equivalently of the time
dependent vector field (4.2)) can be defined as a vector field

09 e O
(7.1) (=g + 50

on Y which is I'-related to its first prolongation

0

940y

8 o 8 o o
T'C= g+ g+ (D) = DOty

on Jiz, i.e. J1¢oI' = TTo(. In other words, J'( is a contact vector field (a symmetry
of the Cartan distribution) tangent to I'(Y") and thus an exterior symmetry of the
equation T'(Y) C Jim.

It is easy to see that an arbitrary I'-horizontal vector field ( = fDr, f € F(Y), is
a symmetry, which immediately means that ¢ on Y is a symmetry of I" if and only if

(7.2) T (vpo¢) ol = VT ovp(C).

In coordinates, (7.2) is represented by a system of PDE

0p” &'OUI‘A: are

(7.3) at o o ¥

for the family of generating functions ¢” = ¢ =TI on Y, 0 = 1,...,m. Using
the horizontal form of I, (7.3) can be expressed by

(7.4) E’UF(C)hF =0
and in terms of Dr it reads
(7.5) [¢,Dr] = —Dr(¢°)Dr.

The last relation says that the symmetries of I' could be defined directly as the
symmetries of the horizontal distribution Hr.
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Since Ly (eyhr = 0 if and only if ¢ is 7-projectable, the symbol of vr in (7.4)
can be omitted under the same assumption. In view of the fact that the vanishing
of Lohr is equivalent to T'ay © hr = hr o T'oy for the flow {a;} of {, a projectable
vector field on Y is a symmetry of I' if and only if its flow permutes the integral
sections of I'. Moreover, if such a symmetry is horizontal then it moves integral
sections along themselves while m-vertical symmetries (time-dependent fields on M,
see Sec. 4) permute integral sections without changing their parametrization . In
this case (7.5) reads [¢,8/0t +v] = 0.

An intrinsic role both of vertical prolongations of connections and of strong hori-
zontal distributions appears in case of vertical symmetries, the set of which we denote
by Sym, (T"). Actually, applying the ideas of Sec. 4, (7.2) means

(7.6) JY ol =VTo(

for vertical (. Consequently, in terms of integral sections of I' and VI" one gets that
for any ¢ € Sym, (T'), a section 7 of 7 is an integral section of I" if and only if £ = oy
is an integral section of VI'. Moreover, { € Sym,(I') if and only if £ is an integral
section of VI for each integral section v of I

Let = be a connection on m; ¢ and ¢ a vertical vector field on Y. Then JY e Hp
locally means

(7.7) D(¢7) = B3¢,

and by (5.3), (7.3) and (7.7) the strong horizontal distribution Hp, contains first
prolongations of vertical symmetries of integral sections of =.

Let I'® be a 2-connection on m. Since it is a particular (holonomic) type of a
connection on 71, a vector field ¢((V) = ¢°9/0t + ¢70/dq” + (%)9/0qf;) on Jhr will
be called a first-order symmetry of T'®) (or of the corresponding semispray D)) if

(78) EUF(Z)(C(l))hF(Z) = 0
or equivalently
(7.9) (¢, D] = —Dpee (¢°)Dpea) .

Hence the first-order symmetries of I'® are just the symmetries of Hp). In coordi-

nates,
(7.10) ¢y = Dre(¢7) — af1y Dren (¢°)
ore, ore.
2 oy (2) A (2) A
Dio)(¢7) = 8—(]>‘(p + WDF(Q)(QD )
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for 7 = (7 — qE’l)go. Again, by (7.8) m;-projectable fields are first-order symmetries
of T® if and only if their flows permute 1-jets of integral sections of T'(?),

Within the context of the equations studied, we are mainly interested in symme-
tries acting on Y. Consequently, a vector field ¢ (7.1) on Y is called a (zero-order)
symmetry of T if its first prolongation J'C is the first-order one. The relation
(7.9) now reads

(7.11) [7'¢, Drea] = =D(¢°) Dpea,

and (7.10) holds trivially. Accordingly, a m o-projectable first-order symmetry ¢
is just the prolongation J'¢ of the symmetry ¢ = Ty o(¢™M).

Let ¢ be m-projectable. Then it is a symmetry of I'®) if and only if the flow of J'¢
permutes first jets of integral sections of I'®). Due to the definition of J'¢, ¢ is a
symmetry if and only if its flow permutes the integral sections of T'?) in themselves.

Suppose the symmetries to be w-vertical and denote their set by Symv(I‘@)).
Analogously to (7.6) one sees that ¢ € Sym, (I'®)) if and only if

J*CoT® =yI®o 7,

where J2?¢ = J?((,idr) is the second prolongation of (. Consequently, v is an
integral section of T'® if and only if & = ¢ o7 is an integral section of VI'?) and
¢ € Sym, (I'®) if and only if ¢ is an integral section of VT'(®) for each integral section
~y of T().

The presented classification enables us to describe very naturally the interrelations
between (vertical) symmetries of a 2-connection I'®) (second-order ODE) and its field
of geodesics T' (first-order ODE) (see (5.12)). First, since any integral section of T’
is an integral section of T, if ¢ is a symmetry of I'®) then its restriction to the
domain is a symmetry of I'. Secondly, by virtue of the fact that

JHT,idg) o T =T@ ol ifand only if  J'(VT,idg) o VI = VI'® o VT

one easily deduces that a symmetry of I' is a symmetry of its prolongation I'® o T'.

Recall the autonomous situation. In this case the considerations describe the gen-
erators of groups of transformations invariant with respect to the graphs of geodesics.
For example, according to (7.9) a vector field ¢(") on T)M is a first-order symmetry
of a semispray w on TM if [((),w] = 0 while according to (7.11) a vector field ¢ on
M is a (zeroth-order) symmetry of w if [(¢,w] = 0.

Notice finally that comparing the above classification e.g. with [23] or [6], the first-
order symmetries of a 2-connection are the so-called dynamical symmetries of the
corresponding semispray while the zero-order ones are nothing but the Lie symme-
tries.
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