$\alpha\text{-IDEALS}$ IN 0-DISTRIBUTIVE POSETS

KHALID A. MOKBEL, Al Hudaydah

(Received July 7, 2013)

Abstract. The concept of α -ideals in posets is introduced. Several properties of α -ideals in 0-distributive posets are studied. Characterization of prime ideals to be α -ideals in 0distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal I of a 0-distributive poset is non-dense, then I is an α -ideal. Moreover, it is shown that the set of all α -ideals $\alpha \operatorname{Id}(P)$ of a poset P with 0 forms a complete lattice. A result analogous to separation theorem for finite 0-distributive posets is obtained with respect to prime α -ideals. Some counterexamples are also given.

Keywords: 0-distributive poset; ideal; α -ideal; prime ideal; non-dense ideal; minimal ideal; annihilator ideal

MSC 2010: 06A06, 06A75

1. INTRODUCTION

Grillet and Varlet [4] introduced 0-distributive lattices as a generalization of distributive lattices. The theory of 0-distributive lattices was further studied by Balasubramani and Venkatanarasimhan [1] and Jayaram [7]. Cornish [2] introduced and studied the properties of α -ideals in distributive lattices. Generalization of the concept of α -ideals in 0-distributive lattices is carried out by Jayaram [7]. In fact, he proved the separation theorem for prime α -ideals in the case of 0-distributive lattices as follows.

Theorem A (Jayaram [7]). Let I be an α -ideal of a 0-distributive lattice L and S be a meet subsemilattice of L such that $I \cap S = \emptyset$. Then there exists a prime α -ideal G of L such that $I \subseteq G$ and $G \cap S = \emptyset$.

Additional properties of α -ideals in 0-distributive lattices were obtained by Pawar and Mane [12] and Pawar and Khopade [11].

In Section 2 of this paper, we show several results concerning α -ideals, which are extensions of the results concerning lattices and semilattices given in Pawar and Mane [12] and Pawar and Khopade [11] to posets, especially to 0-distributive posets. In Section 3, we prove that the set of all α -ideals of a poset with 0 is a complete lattice. Further, we generalize Theorem A for finite 0-distributive posets.

We begin with necessary concepts and terminology. For notation and terminology not mentioned here the reader is referred to Grätzer [3].

Let P be a poset and $A \subseteq P$. The set $A^u = \{x \in P; x \ge a \text{ for every } a \in A\}$ is called the *upper cone* of A. Dually, we have the concept of the *lower cone* A^l of A. We shall write A^{ul} instead of $\{A^u\}^l$ and dually. The upper cone $\{a\}^u$ is simply denoted by a^u and $\{a, b\}^u$ is denoted by $(a, b)^u$. Similar notation is used for lower cones. Further, for $A, B \subseteq P, \{A \cup B\}^u$ is denoted by $\{A, B\}^u$ and for $x \in P$, the set $\{A \cup \{x\}\}^u$ is denoted by $\{A, x\}^u$. Similar notation is used for lower cones. We note that $A \subseteq A^{ul}$ and $A \subseteq A^{lu}$. If $A \subseteq B$, then $B^l \subseteq A^l$ and $B^u \subseteq A^u$. Moreover, $A^{lul} = A^l, A^{ulu} = A^u$ and $\{a^u\}^l = \{a\}^l = a^l$.

A poset P with 0 is called 0-*distributive*, see Joshi and Waphare [9], if $(x, y)^l = \{0\} = (x, z)^l$ imply $\{x, (y, z)^u\}^l = \{0\}$ for $x, y, z \in P$. Dually, we have the concept of a 1-*distributive* poset.

A nonempty subset I of a poset P is called an *ideal* if $a, b \in I$ implies $(a, b)^{ul} \subseteq I$, see Halaš [5]. A proper ideal I is called *prime*, if $(a, b)^l \subseteq I$ implies that either $a \in I$ or $b \in I$, see Halaš and Rachůnek [6]. Dually, we have the concepts of a *filter* and a *prime filter*. Given $a \in P$, the subset $a^l = \{x \in P; x \leq a\}$ is an ideal of Pgenerated by a, denoted by (a]. We shall call (a] a *principal ideal*. Dually, a filter $[a) = a^u = \{x \in P; x \leq a\}$ generated by a is called a principal *filter*. It is known that the set of all ideals of a poset P, denoted by Id(P), forms a complete lattice under set inclusion, see Halaš and Rachůnek [6]. A nonempty subset Q of P is called an *up directed set*, if $Q \cap (x, y)^u \neq \emptyset$ for any $x, y \in Q$. Dually, we have the concept of a *down directed set*. If an ideal I (filter F) is an up (down) directed set of P, then it is called a *u-ideal* (*l-filter*).

For a nonempty subset A of a poset P with 0, define a subset A^{\perp} of P as follows:

$$A^{\perp} = \{ z \in P ; \ (a, z)^l = \{ 0 \} \ \forall \, a \in A \}.$$

If $A = \{x\}$, then we write a^{\perp} instead of $\{a\}^{\perp}$. We note that $A \subseteq A^{\perp \perp}$ and $x \in x^{\perp \perp}$. Further, $A^{\perp} = \bigcap_{a \in A} a^{\perp}$ and $A \cap A^{\perp} = \{0\}$. Moreover, if $A \subseteq B$, then $B^{\perp} \subseteq A^{\perp}$.

An ideal I of a poset P is said to be an α -*ideal*, if $x^{\perp \perp} \subseteq I$ for all $x \in I$. We denote the set of all α -ideals of P by $\alpha \operatorname{Id}(P)$.

2. α -ideals in 0-distributive posets

In this section, we study α -ideals, prime and minimal prime ideals in a 0distributive poset. We begin by proving a characterization of 0-distributive posets.

Lemma 2.1. A poset P is 0-distributive if and only if $(x, y)^{ul^{\perp}} = x^{\perp} \cap y^{\perp}$ for all $x, y \in P$.

Proof. Let P be a 0-distributive poset and let $a \in (x, y)^{ul^{\perp}}$. Since $x, y \in (x, y)^{ul}$, we get $(a, x)^l = \{0\} = (a, y)^l$, which implies $a \in x^{\perp} \cap y^{\perp}$. Hence $(x, y)^{ul^{\perp}} \subseteq x^{\perp} \cap y^{\perp}$.

To show the converse inclusion, suppose that $a \in x^{\perp} \cap y^{\perp}$. We have $(a, x)^{l} = \{0\} = (a, y)^{l}$ and by 0-distributivity, we get $\{a, (x, y)^{u}\}^{l} = \{0\}$. Let $z \in (x, y)^{ul}$. Then clearly $(a, z)^{l} = \{0\}$. Thus $a \in (x, y)^{ul^{\perp}}$, which gives $x^{\perp} \cap y^{\perp} \subseteq (x, y)^{ul^{\perp}}$. Therefore $(x, y)^{ul^{\perp}} = x^{\perp} \cap y^{\perp}$.

Conversely, suppose $(x, y)^{ul^{\perp}} = x^{\perp} \cap y^{\perp}$ for all $x, y \in P$. To prove that P is 0-distributive, let us assume that $(a, x)^{l} = \{0\} = (a, y)^{l}$ for $a, x, y \in P$. Let $z \in \{a, (x, y)^{u}\}^{l}$. Then clearly $(z, x)^{l} = \{0\} = (z, y)^{l}$ and $z \in (x, y)^{ul}$. By assumption, $z \in x^{\perp} \cap y^{\perp} = (x, y)^{ul^{\perp}}$ and $z \in (x, y)^{ul}$, which yield $z \in (x, y)^{ul} \cap (x, y)^{ul^{\perp}} = \{0\}$. Therefore z = 0 and the 0-distributivity of P follows.

For an ideal I of a poset P define a subset I' of P as follows:

$$I' = \{ x \in P; \ a^{\perp} \subseteq x^{\perp} \text{ for some } a \in I \}.$$

The following is a characterization of an ideal I to be an α -ideal in terms of I' in a 0-distributive poset.

Theorem 2.2. Let I be a u-ideal of a 0-distributive poset P. Then I' is the smallest α -ideal containing I. Moreover, an ideal I of P is an α -ideal if and only if I = I'.

Proof. First we show that I' is an ideal. For this, assume that $x, y \in I'$ and $z \in (x, y)^{ul}$. We have to show that $z \in I'$. Since $x, y \in I'$, there exist $a, b \in I$ such that $a^{\perp} \subseteq x^{\perp}$ and $b^{\perp} \subseteq y^{\perp}$, and hence $a^{\perp} \cap b^{\perp} \subseteq x^{\perp} \cap y^{\perp}$. Therefore by Lemma 2.1, $a^{\perp} \cap b^{\perp} \subseteq (x, y)^{ul^{\perp}}$. Since I is a u-ideal, there exists an element $c \in (a, b)^u$ and $c \in I$. Now, $c \in (a, b)^u$ implies $c^{\perp} \subseteq a^{\perp} \cap b^{\perp}$, which gives $c^{\perp} \subseteq (x, y)^{ul^{\perp}}$. Since $z \in (x, y)^{ul^{\perp}}$. Since $c^{\perp} \subseteq z^{\perp}$ and therefore $z \in I'$.

Now, we show that I' is an α -ideal. Let $x \in I'$, i.e., there exists $a \in I$ such that $a^{\perp} \subseteq x^{\perp}$. We show that $x^{\perp \perp} \subseteq I'$. Suppose on the contrary that $x^{\perp \perp} \not\subseteq I'$. Then there exists an element $y \in P$ such that $y \in x^{\perp \perp}$ and $y \notin I'$. Observe that $a^{\perp} \not\subseteq y^{\perp}$, since $a^{\perp} \subseteq y^{\perp}$ and $a \in I$ imply that $y \in I'$, a contradiction to the fact that $y \notin I'$.

Thus $a^{\perp} \not\subseteq y^{\perp}$. So, there exists $b \in a^{\perp}$ and $b \notin y^{\perp}$. Since $a^{\perp} \subseteq x^{\perp}$, we have $b \in x^{\perp}$ and $b \notin y^{\perp}$, which is a contradiction to the fact that $y \in x^{\perp \perp}$. Hence $x^{\perp \perp} \subseteq I'$.

The inclusion $I \subseteq I'$ follows from the fact that $a^{\perp} \subseteq a^{\perp}$ for any element $a \in I$. Now, suppose that there exists an α -ideal J with the property $I \subseteq J$. We have to show that $I' \subseteq J$. Let $x \in I'$, i.e., $a^{\perp} \subseteq x^{\perp}$ for some $a \in I$. Since $I \subseteq J$, we have $a^{\perp} \subseteq x^{\perp}$ and $a \in J$. Using the fact that J is an α -ideal, we get $x^{\perp \perp} \subseteq a^{\perp \perp} \subseteq J$. Since $x \in x^{\perp \perp}$, we get $x \in J$ as required.

Further, let I be an α -ideal. To show that I = I', it is enough to show that $I' \subseteq I$. For this, assume $x \in I'$. Then $a^{\perp} \subseteq x^{\perp}$ for some $a \in I$, which yields $x^{\perp \perp} \subseteq a^{\perp \perp} \subseteq I$. By using the fact that $x \in x^{\perp \perp}$, we get $x \in I$. Hence I = I'.

Remark 2.3. The statement of Theorem 2.2 is not necessarily true if we drop the condition of I being a u-ideal. Consider the 0-distributive poset P depicted in Figure 1 and the ideal $I = \{0, a, b\}$, which is not a u-ideal. Observe that $I' = \{0, a, b\} \cup \{x_i\}$, where i = 1, 2, ... But I' is not an ideal as $(b, x_1)^{ul} = P \not\subseteq I'$.

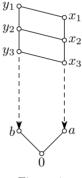


Figure 1.

For a nonempty subset A of a poset P with 0, consider the set 0(A) as follows:

 $0(A) = \{ x \in P; \ (a, x)^l = \{ 0 \} \text{ for some } a \in A \}.$

We have the following result.

Theorem 2.4. Let A be a down directed set of a 0-distributive poset P. Then 0(A) is an α -ideal of P.

Proof. First we prove that 0(A) is an ideal. Let $x, y \in 0(A)$ and $z \in (x, y)^{ul}$. We show that $z \in 0(A)$. Since $x, y \in 0(A)$, there exist $a, b \in A$ such that $(a, x)^l = \{0\} = (b, y)^l$. Now, since A is a down directed set, there exists an element $c \in A$ such that $c \in (a, b)^l$, and consequently, $(c, x)^l = \{0\} = (c, y)^l$. By 0-distributivity, we get $\{c, (x, y)^u\}^l = \{0\}$, which gives $(c, z)^l = \{0\}$. Hence $z \in O(A)$.

Now, we show that 0(A) is an α -ideal. Let $x \in 0(A)$, that is, $(a, x)^l = \{0\}$ for some $a \in A$. We claim that $x^{\perp \perp} \subseteq 0(A)$. Suppose that $z \in x^{\perp \perp}$. We obtain $(z, y)^l = \{0\}$ for all $y \in x^{\perp}$. Since $a \in x^{\perp}$, we get $(z, a)^l = \{0\}$, and this yields $z \in 0(A)$. Therefore 0(A) is an α -ideal.

R e m a r k 2.5. The statement of Theorem 2.4 is not true if we remove the condition that A is a down directed set. In the 0-distributive poset P depicted in Figure 2, the set $A = \{1, a, b\}$ is not a down directed set. Observe that $0(A) = \{0, a, b\}$ is not an ideal as $a, b \in 0(A)$, but $(a, b)^{ul} = P \not\subseteq 0(A)$.

Figure 2.

An immediate consequence of Theorem 2.4 is the following:

Corollary 2.6. For any *l*-filter F of a 0-distributive poset P, 0(F) is an α -ideal of P.

However, in the case of meet semilattices we have a theorem of Pawar and Mane [12] following as a corollary.

Corollary 2.7. For any filter F of a 0-distributive meet semilattice P, 0(F) is an α -ideal of P.

Let I be a proper ideal of a poset P. Then I is said to be a maximal ideal of P, if the only ideal properly containing I is P. A maximal filter, more usually known as an ultra filter, is defined dually. Also, we have the concepts of a minimal ideal and a minimal filter.

It has to be noticed that Joshi and Mundlik [8], in their two lemmas listed below, have assumed that every maximal l-filter (maximal among all l-filters) is a maximal filter (maximal among all filters).

Lemma 2.8 (Joshi, Mundlik [8]). Let F be an *l*-filter of a poset P with 0. Then F is a maximal *l*-filter if and only if the following condition holds:

for any $x \notin F$, there exists $y \in F$ such that $(x, y)^l = \{0\}$.

Lemma 2.9 (Joshi, Mundlik [8]). Let P be a finite 0-distributive poset and let I be an ideal of P. Then I is a minimal prime ideal of P if and only if P - I is a maximal l-filter of P.

The following result is a characterization of prime ideals to be α -ideals in the case of finite 0-distributive posets.

Theorem 2.10. Every minimal prime ideal of a finite 0-distributive poset P is an α -ideal.

Proof. Let $x \in I$. To show that I is an α -ideal, we have to show that $x^{\perp \perp} \subseteq I$. Since I is a minimal prime ideal of P, by Lemma 2.9, P - I is a maximal l-filter. Now, as $x \notin P - I$, by Lemma 2.8, there exists $y \in P - I$ such that $(x, y)^l = \{0\}$, that is, $y \notin I$ and $y \in x^{\perp}$. Let $z \in x^{\perp \perp}$. Since $y \in x^{\perp}$, we get, $(z, y)^l = \{0\}$, which gives $(z, y)^l \subseteq I$. Since $y \notin I$, by primeness of I, we have $z \in I$. Hence $x^{\perp \perp} \subseteq I$ as required.

Let I be an ideal of a poset P with 0. Then I is called *dense* if $I^{\perp} = \{0\}$ and I is said to be an *annihilator* if $I = I^{\perp \perp}$. It is easy to observe that every annihilator ideal of a poset is an α -ideal.

Theorem 2.11. If a prime ideal *I* of a 0-distributive poset *P* is non-dense, then *I* is an annihilator ideal.

Proof. By assumption, $I^{\perp} \neq \{0\}$. Hence there exists $x \in I^{\perp}$ such that $x \neq 0$. But then $I^{\perp \perp} \subseteq x^{\perp}$. Since $I \subseteq I^{\perp \perp}$ is always true, we get $I \subseteq x^{\perp}$. Further, if $t \in x^{\perp}$, then $(x,t)^l = \{0\} \subseteq I$. From the fact that $I \cap I^{\perp} = \{0\}$, it is clear that $x \notin I$. Indeed, if $x \in I$, then $x \in I \cap I^{\perp} = \{0\}$, hence x = 0 a contradiction to $x \neq 0$. Since $(x,t)^l \subseteq I$ and $x \notin I$, by primeness of I, we get $t \in I$. Therefore $x^{\perp} \subseteq I$. By combining both inclusions, we get $x^{\perp} = I$. Consequently $I = I^{\perp \perp}$, and therefore I is an annihilator.

As a consequence, we have the following statement, which is another characterization of prime ideals to be α -ideals.

Corollary 2.12. If a prime ideal I of a 0-distributive poset P is non-dense, then I is an α -ideal.

3. Prime α -ideal separation theorem in 0-distributive posets

We begin by proving that the set of all α -ideals $\alpha \operatorname{Id}(P)$ of a poset P with 0 is closed under the set-theoretical intersection, in fact, it is a complete lattice.

Lemma 3.1. Let P be a poset with 0 and X be a family of members of $\alpha \operatorname{Id}(P)$. Then $\bigcap_{I \in X} I$ is also in $\alpha \operatorname{Id}(P)$.

Proof. Let $x \in \bigcap_{I \in X} I$. We have $x \in I$ for all $I \in X$. Since I is an α -ideal, we have $x^{\perp \perp} \subseteq I$ for all $I \in X$, which implies that $x^{\perp \perp} \subseteq \bigcap_{I \in X} I$. Therefore $\bigcap_{I \in X} I \in \alpha \operatorname{Id}(P)$.

Theorem 3.2 follows immediately from Lemma 3.1.

Theorem 3.2. Let *P* be a poset with 0. Then $(\alpha \operatorname{Id}(P), \subseteq)$ forms a complete lattice in which infima and suprema of a family *X* of $\alpha \operatorname{Id}(P)$ are defined as follows: $\bigwedge_{I \in X} I = \bigcap_{I \in X} I$ and $\bigvee_{I \in X} I = \bigcap_{Y \in \alpha \operatorname{Id}(P)} Y$, where $\bigcup_{I \in X} I \subseteq Y$.

Let P be a given poset. Define the *extension* of an ideal I of P, denoted by I^e , as

$$I^e = \{ J \in \mathrm{Id}(P); \ J \subseteq I \}$$

and for an ideal λ of the lattice $(\mathrm{Id}(P), \subseteq)$, define the *contraction* of λ , denoted by λ^c , as

$$\lambda^c = \bigcup \{J; \ J \in \lambda\}.$$

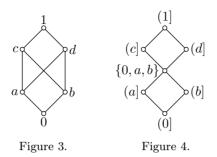
It is obvious that I^e is a principal ideal of Id(P) for every ideal I of a poset P. More details about these concepts can be found in Kharat and Mokbel [10].

In the following theorem we establish the relation between annihilator ideals of a 0-distributive poset P and the α -ideals of the lattice Id(P).

Theorem 3.3. Let P be a poset with 0. If I is an annihilator ideal, then I^e is an α -ideal of Id(P).

Proof. Suppose $J \in I^e$. Then we have $J \subseteq I$, which yields $J^{\perp \perp} \subseteq I^{\perp \perp}$. Since I is an annihilator, we get $J^{\perp \perp} \subseteq I$. Observe that $J^{\perp \perp} \subseteq I^e$. Indeed, if $J^{\perp \perp} \not\subseteq I^e$, then there exists $J_1 \in \mathrm{Id}(P)$ such that $J_1 \in J^{\perp \perp}$ and $J_1 \notin I^e$, i.e., $J_1 \in J^{\perp \perp}$ and $J_1 \not\subseteq I$. Hence there exists an element $x \in P$ such that $x \in J_1$ and $x \notin I$, which implies $(x] \in J^{\perp \perp} \subseteq I$ and $x \notin I$, a contradiction. Consequently $J^{\perp \perp} \subseteq I^e$. Hence I^e is an α -ideal.

Remark 3.4. The statement of Theorem 3.3 is not necessarily true if we drop the condition that I is an annihilator. Consider the poset P depicted in Figure 3 and its Id(P) depicted in Figure 4. Consider the α -ideal $I = \{0, a, b\}$, which is not an annihilator in P. Observe that $I^e = \{(0], (a], (b], \{0, a, b\}\}$ is not an α -ideal in Id(P), as $\{0, a, b\} \in I^e$, but $\{0, a, b\}^{\perp \perp} = \text{Id}(P) \not\subseteq I^e$.



Theorem 3.5. Let P be a poset and let λ be an α -ideal of the lattice Id(P). Then λ^c is an α -ideal of P.

Proof. First we prove that λ^c is an ideal. Consider elements $x, y \in \lambda^c$. If x and y belong to some $J \in \lambda$, then the result is obvious. Suppose there exist $J_1, J_2 \in \lambda$ such that $x \in J_1$ and $y \in J_2, J_1 \neq J_2$, then we have $(x, y)^{ul} \subseteq J_1 \vee J_2 \in \lambda$, as λ is an ideal. Thus λ^c is an ideal of P.

Now, we show that λ^c is an α -ideal of $\mathrm{Id}(P)$. Let $x \in \lambda^c$. We claim that $x^{\perp \perp} \subseteq \lambda^c$. Observe that $x \in \lambda^c$ implies $(x] \in \lambda$. Since λ is an α -ideal of $\mathrm{Id}(P)$, we have $(x]^{\perp \perp} \subseteq \lambda$. Therefore $x^{\perp \perp} \subseteq \lambda^c$ as required.

Now, let K be an l-filter of a poset P. Define a subset γ of Id(P) as follows:

(*)
$$\gamma = \{J \in \mathrm{Id}(P); \ J \cap K \neq \emptyset\}.$$

We use the following results to prove Theorem 3.9, which is a generalization of Theorem A for finite posets.

Lemma 3.6 (Kharat, Mokbel [10]). Let P be a poset, K be an l-filter of P and let γ be a subset of Id(P) as defined in (*). Then γ is a filter of Id(P).

Lemma 3.7 (Kharat, Mokbel [10]). Let P be a finite poset and λ be a prime ideal of Id(P). Then λ^c is a prime ideal of P.

Lemma 3.8 (Joshi, Waphare [9]). A poset P is 0-distributive if and only if Id(P) is a 0-distributive lattice.

Theorem 3.9. Let I be an annihilator ideal and F be an l-filter of a finite 0distributive poset P for which $I \cap F = \emptyset$. Then there exists a prime α -ideal G of P such that $I \subseteq G$ and $I \cap F = \emptyset$. Proof. Suppose I is an annihilator ideal and F is an l-filter of a finite 0-distributive poset P for which $I \cap F = \emptyset$. By Theorem 3.3, I^e is an α -ideal of $\mathrm{Id}(P)$ and also $\gamma = \{J \in \mathrm{Id}(P); J \cap F \neq \emptyset\}$ is a filter of $\mathrm{Id}(P)$ by Lemma 3.6. Observe that $I^e \cap \gamma = \emptyset$. Were this false, then there exists $J_1 \in \mathrm{Id}(P)$ such that $J_1 \in I^e \cap \gamma$. Thus $J_1 \subseteq I$ and $J_1 \cap F \neq \emptyset$. In other words, $I \cap F \neq \emptyset$, which contradicts the hypothesis. By Lemma 3.8, $\mathrm{Id}(P)$ is a 0-distributive lattice. Hence, by Theorem A, there exists a prime α -ideal λ of $\mathrm{Id}(P)$ such that $I^e \subseteq \lambda$ and $\lambda \cap \gamma = \emptyset$. Since λ is a prime α -ideal of $\mathrm{Id}(P)$, by Lemma 3.7 and Theorem 3.5, λ^c is a prime α -ideal of A^c , we have $x \in \lambda^c$. Also, we have $\lambda^c \cap F = \emptyset$. Otherwise, if $\lambda^c \cap F \neq \emptyset$, then there exists $x \in P$ such that $x \in \lambda^c \cap F$. Hence $(x] \subseteq J$, where $J \in \lambda$ and $(x] \in \gamma$. In other words, $(x] \in \lambda \cap \gamma$, a contradiction.

Remark 3.10. (i) The statement of Theorem 3.9 is not necessarily true if we drop the condition that P is finite. Let \mathbb{N} be the set of natural numbers. Consider the set $P = \{\emptyset\} \cup \{X \subseteq \mathbb{N}; X \text{ is an infinite subset of } \mathbb{N}\} \cup \{X \subseteq \mathbb{N}; |X| = 1\}$. It is easy to observe that P is an infinite 0-distributive poset under set inclusion and $F = \{X \subseteq \mathbb{N}; X \text{ is an infinite subset of } \mathbb{N}\}$ is an *l*-filter of P, see Joshi and Mundlik [8]. Let $I = \{\{1\}, \emptyset\}$. Observe that I is an annihilator ideal for which $I \cap F = \emptyset$. But there does not exist a prime α -ideal G of P for which $I \subseteq G$ and $G \cap F = \emptyset$.

(ii) The condition of F being an l-filter cannot be dropped in the statement of Theorem 3.9. Consider the finite 0-distributive poset P depicted in Figure 5. Consider the annihilator ideal $I = \{0, a, b\}$, which is not prime, and a filter $F = \{a', b', c', d', 1\}$, which is not an l-filter. Observe that $I \cap F = \emptyset$, but there is no prime α -ideal G of Psuch that $I \subseteq G$ and $G \cap F = \emptyset$.

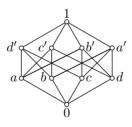


Figure 5.

(iii) Theorem 3.9 is not necessarily true if we drop the condition that I is an annihilator ideal. Consider the finite 0-distributive poset P depicted in Figure 5. Let $I = \{0, a, b, c, d\}$ and $F = \{a', 1\}$. Observe that I is an α -ideal but not prime and F is an *l*-filter of P for which $I \cap F = \emptyset$, but there is no prime α -ideal G of P such that $I \subseteq G$ and $G \cap F = \emptyset$.

Lemma 3.11 (Kharat, Mokbel [10]). Let P be a meet semilattice and λ be a prime ideal of Id(P). Then λ^c is a prime ideal of P.

However, if the poset is a meet semilattice, then by Theorem 3.9 and Lemma 3.11 we have the following:

Corollary 3.12. Let *I* be an annihilator ideal and *F* be a filter of a 0-distributive meet semilattice *P* for which $I \cap F = \emptyset$. Then there exists a prime α -ideal *G* of *P* such that $I \subseteq G$ and $I \cap F = \emptyset$.

A c k n o w l e d g e m e n t. The author is grateful to the referee for various suggestions.

References

[1]	P. Balasubramani, P. V. Venkatanarasimhan: Characterizations of the 0-distributive lat-				
	tice. Indian J. Pure Appl. Math. 32 (2001), 315–324.	$\mathbf{z}\mathbf{b}\mathbf{l}$	M	ЛR	R

- [2] W. H. Cornish: Annulets and α-ideals in a distributive lattice. J. Aust. Math. Soc. 15 (1973), 70–77.
- [3] G. Grätzer: General Lattice Theory. New appendices by the author with B. A. Davey et al. Birkhäuser, Basel, 1998. zbl MR
- [4] P. A. Grillet, J. C. Varlet: Complementedness conditions in lattices. Bull. Soc. R. Sci. Liège (electronic only) 36 (1967), 628–642.
- [5] R. Halaš: Characterization of distributive sets by generalized annihilators. Arch. Math., Brno 30 (1994), 25–27.
 [5] MR
- [6] R. Halaš, J. Rachůnek: Polars and prime ideals in ordered sets. Discuss. Math., Algebra Stoch. Methods 15 (1995), 43–59.
- [7] C. Jayaram: Prime α -ideals in an 0-distributive lattice. Indian J. Pure Appl. Math. 17 (1986), 331–337. Zbl MR
- [8] V. V. Joshi, N. Mundlik: Prime ideals in 0-distributive posets. Cent. Eur. J. Math. 11 (2013), 940–955.
- [9] V. V. Joshi, B. N. Waphare: Characterizations of 0-distributive posets. Math. Bohem. 130 (2005), 73-80.
- [10] V. S. Kharat, K. A. Mokbel: Semiprime ideals and separation theorems for posets. Order 25 (2008), 195–210.
- [11] Y. S. Pawar, S. S. Khopade: α-ideals and annihilator ideals in 0-distributive lattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 63–74.
- [12] Y. S. Pawar, D. N. Mane: α-ideals in 0-distributive semilattices and 0-distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 435–443.

Author's address: Khalid A. Mokbel, Mathematics Department, Education Faculty, Hodaidah University, P.O. Box 3114, Al Hudaydah, Yemen, e-mail: khalidalaghbari@yahoo.com.