MATHEMATICA BOHEMICA, Vol. 136, No. 1, pp. 1-8, 2011

Boundary value problem with an inner point for the singularly perturbed semilinear
differential equations

Róbert Vrábeľ

Róbert Vrábeľ, Institute of Applied Informatics, Automation and Mathematics, Faculty of Materials Science and Technology, Hajdoczyho 1, 917 24 Trnava, Slovakia, e-mail: robert.vrabel@stuba.sk

Abstract: In this paper we investigate the problem of existence and asymptotic behavior of solutions for the nonlinear boundary value problem
\epsilon y"+ky=f(t,y),\quad t\in\langle a,b \rangle, k<0, 0<\epsilon\ll1
satisfying three point boundary conditions. Our analysis relies on the method of lower and upper solutions and delicate estimations.

Keywords: singular perturbation, boundary value problem, upper solution, lower solution

Classification (MSC 2010): 34B16


Full text available as PDF.

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]