Biologia plantarum 59:357-365, 2015 | DOI: 10.1007/s10535-015-0506-1

Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea

M. Barták1,*, K. Trnková1, E. S. Hansen2, J. Hazdrová1, K. Skácelová1, J. Hájek1, M. Forbelská3
1 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
2 Natural History Museum of Denmark, København, Denmark
3 Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic

In many polar and alpine ecosystems, lichens of genus Umbilicaria represent dominant species forming community structure. Photosynthetic and spectral properties of the lichens may change rapidly according to an actual hydration status of their thalli. In this study, we investigated responses of photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), effective quantum yield of photosynthetic efficiency of photosystem (PS) II (ΦPSII), and several photosynthetic parameters derived from fast induction kinetics of chlorophyll fluorescence (OJIP) to controlled dehydration. We used U. arctica and U. hyperborea collected close to Nuuk, Greenland. In both the species, PRI showed a curvilinear increase with dehydration, i.e., a decreasing water potential (Ψw). The increase was apparent within Ψw range of 0 to -10 MPa. The PRI increase was less pronounced in U. arctica than in U. hyperborea. NDVI decreased with a progressive thallus dehydration in both the species, however, throughout Ψw range of 0 to -30 MPa, U. hyperborea had lower NDVI values than U. arctica. The relationship between ΦPSII and Ψw resulted in a typical S curve. A critical Ψw at which photosynthetic processes were fully inhibited was -30 MPa in both the species, however, species-specific differences in the S curve shape were found. Analyses of photosynthetic parameters derived from OJIPs revealed that the absorption of radiation energy and a trapping rate increased with dehydration in active reaction centres of PS II, the number of which decreased with a more pronounced lichen thallus dehydration. It is concluded that U. arctica and U. hyperborea possess effective physiological mechanisms to maintain an effective photosynthesis when partly dehydrated (the Ψw range of 0 to -15 MPa). In spite of similar ecological niches that these two lichens occupy in nature, their spectral and photosynthetic properties differred.

Keywords: chlorophyll fluorescence; lichens; NDVI; photosystem II; PRI; quantum yield; water potential
Subjects: lichen thallus; dehydration; water potential; reflectance; chlorophyll fluorescence; photosystem II
Species: Umbilicaria arctica; Umbilicaria hyperborea

Received: April 22, 2014; Revised: November 18, 2014; Accepted: December 5, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Barták, M., Trnková, K., Hansen, E.S., Hazdrová, J., Skácelová, K., Hájek, J., & Forbelská, M. (2015). Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biologia plantarum59(2), 357-365. doi: 10.1007/s10535-015-0506-1.
Download citation

References

  1. Barták, M., Gloser, J., Hájek, J.: Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. - Lichenologist 37: 433-443, 2005. Go to original source...
  2. Barták, M., Hájek, J., Gloser, J.: Heterogeneity of chlorophyll fluorescence over thalli of several macrolichens exposed to adverse environmental factors: interspecific differences as related to thallus hydration and high irradiance. - Photosynthetica 38: 531-537, 2000. Go to original source...
  3. Barták, M., Hájek, J., Vráblíkova, H., Dubová, J.: High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. - Plant Biol. 6: 333-341, 2004. Go to original source...
  4. Barták, M., Váczi, P., Hájek, J., Hazdrová, J., Skácelová, K.: Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season - Czech Polar Rep. 4: 63-72, 2014. Go to original source...
  5. Bechtel, R., Rivard, B., Sanchez-Azofeifa, A.: Spectral properties of foliose and crustose lichens based on laboratory experiments. - Remote Sens. Environ. 82: 389-396, 2002. Go to original source...
  6. Bokhorst, S., Tommervik, H., Callaghan, T.V., Phoenix, G.K., Bjerke, J.W.: Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. - Environ. exp. Bot. 81: 18-25, 2012. Go to original source...
  7. Bubier, J.L., Rock, B.N., Crill, P.M.: Spectral reflectance measurements of boreal wetland and forest mosses. - J. geophys. Res. 102: 29483-29494, 1997. Go to original source...
  8. Byazrov, L.G.: [Ranges and their descriptions of species of family Umbilicariaceae (lichenized Ascomycota), identified in the territory of Mongolia.] - In: Proceedings of 3rd Congress of Russian Mycologists. P. 91. Moscow 2012. [In Russ.]
  9. Campi, P., Mastrorilli, M., Modugno, F., Palumbo, A.D.: Crop water status estimated by remote sensing in formation. - In: Santini, A., Lamaddalena, N., Severino, G., Palladino, M. (ed.): Irrigation in Mediterranean Agriculture: Challenges and Innovation for the Next Decades. Pp. 69-75. CIHEAM, Bari 2008.
  10. Elsayed, S., Mistele, B., Schmidhalter, U.: Can changes in leaf water potential be assessed spectrally? - Funct. Plant Biol. 38: 523-533, 2011. Go to original source...
  11. Fabião, M., Ferreira, M.I., Conceição, N., Silvestre, J.: Transpiration and water stress effects on water use, in relation to estimations from NDVI: application in a vineyard in SE Portugal. - In: Erena, M., López-Francos, A., Montesinos, S., Berthoumieu, J.-P. (ed.): The Use of Remote Sensing and Geographic Information Systems for Irrigation Management in Southwest Europe. Pp. 203-208. CIHEAM/IMIDA/SUDOE, Zaragoza 2012.
  12. Gamon, J.A., Field, C.B., Bilger, W., Björkman, O., Fredeen, A., Peñuelas, J.: Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. - Oecologia 85: 1-7, 1990. Go to original source...
  13. Gamon, J.A., Huemmrich, K.F., Stone, R.S., Tweedie, C.E.: Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: decreased vegetation growth following earlier snowmelt. - Remote Sens. Environ. 129: 144-153, 2013. Go to original source...
  14. Gamon, J.A., Serrano, L., Surfus, J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional type, and nutrient levels. - Oecologia 112: 492-501, 1997. Go to original source...
  15. Gamon, J.A., Surfus, J.S.: Assessing leaf pigment content and activity with a reflectometer. - New Phytol. 143: 105-117, 1999. Go to original source...
  16. Garty, J., Tamir, O., Cohen, Y., Lehr, H, Goren, A.I.: Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. - Environ. Toxicol. Chem. 21: 848-858, 2002. Go to original source...
  17. Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, A., Orlovsky, L.: Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. - Physiol. Plant. 109: 410-418, 2000. Go to original source...
  18. Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R.: Spectral properties of plants. - Appl. Optics 4: 11-20, 1965. Go to original source...
  19. Gloser, J., Gloser, V.: Changes in spectral reflectance of a foliar lichen Umbilicaria hirsuta during desiccation. - Biol. Plant. 51: 395-398, 2007. Go to original source...
  20. Hájek, J., Barták, M., Dubová, J.: Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. - Biol. Plant. 50: 624-634, 2006. Go to original source...
  21. Hansen, E.S.: Greenland Lichens - Atuagkat, Rhodos and Danish Polar Center, Copenhagen 1995.
  22. Hansen, E.S.: A contribution to the lichen flora of the Kobbefjord area, West Greenland. - Bot. lithuanica 17: 151-155, 2011.
  23. Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R.J., Barták, M.: A dip in the chlorophyll fluorescence induction at 0.2-2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. - B.B.A. Bioenergetics 1757: 12-20, 2006. Go to original source...
  24. Jiang, Y., Carrow, R.N., Duncan, R.R.: Physiological acclimation of seashore paspalum and bermudagrass to low light. - Sci. Hort. 105: 101-115, 2005. Go to original source...
  25. Jupa, R., Hájek, J., Hazdrová, J., Barták, M.: Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. - Czech Polar Rep. 2: 31-41, 2012. Go to original source...
  26. Larson, D.W.: Seasonal change in the pattern of net CO2 exchange in Umbilicaria lichens. - New Phytol. 84: 349-369, 1980. Go to original source...
  27. Larson, D.W.: The pattern of production within individual Umbilicaria lichen thalli. - New Phytol. 94: 409-419, 1983. Go to original source...
  28. Lazár, D.: Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. - J. theor. Biol. 220: 469-503, 2003. Go to original source...
  29. Lazár, D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  30. Letts, M.G., Phelan, C.A., Johnson, D.R.E., Rodd, S.B.: Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cotton woods in a riparian woodland. - Tree Physiol. 28: 1037-1048, 2008. Go to original source...
  31. Meroni, M., Picchi, V., Rossini, M., Cogliati, S., Panigada, C., Nali, C., Lorenzini, G., Colombo, R.: Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index. - Int. J. Remote Sens. 29: 5409-5422, 2008. Go to original source...
  32. Mohammed, G.H., Noland, T.L., Irving, D., Sampson, P.H., Zarco-Tejada, P.J., Miller, J.R.: Natural and stress-induced effects on leaf spectral reflectance in Ontario species. - Forest Res. Rep. 156: 1-34, 2000.
  33. Naumann, J.C., Anderson, J.E., Young, D.R.: Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. - Remote Sens. Environ. 112: 3865-3875, 2008. Go to original source...
  34. Nayaka, S., Saxena, P.: Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. - Indian J. fundam. appl. Life Sci. 4: 167-179, 2014.
  35. Neta, T., Cheng, Q., Bello, R.L., Hu, B.: Lichens and mosses moisture content assessment through high-spectral resolution remote sensing technology: a case study of the Hudson Bay Lowlands, Canada. - Hydrol. Processes 24, 2617-2628, 2010. Go to original source...
  36. Peñuelas, J., Filella, I., Gamon, J.A.: Assesment of photosynthetic radiation-use efficiency with spectral reflectance. - New Phytol. 131: 291-296, 1995. Go to original source...
  37. Peñuelas, J., Filella, I., Gamon, J.A., Field, C.: Assessing photosynthetic radiation-use efficiency of emergent aquatic vegetation from spectral reflectance. - Aquat. Bot. 58: 307-315, 1997. Go to original source...
  38. Peñuelas, J., Fredeen, A.L., Merino, J., Field, C.B.: Reflectance indexes associated with physiological changes in nitrogen-limited and water-limited sunflower leaves. - Remote Sens. Environ. 48: 135-146, 1994.
  39. Peters, A.: Dissertation on the Effects of Moisture and Climate Change on Sphagnum Growth Rates in Exmoor Mires. - University of Exeter, Exeter 2011.
  40. Rees, W.G., Tutubalin, O.V., Golubeva, E.I.: Reflectance spectra of subarctic lichens between 400 and 2400 nm. - Remote Sens. Environ. 90: 281-292, 2004. Go to original source...
  41. Ripullone, F., Rivelli, A.R., Baraldi, R., Guarini, R., Guerrieri, R., Magnani, F., Peñuelas, J., Raddi, S., Borghetti, M.: Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. - Funct. Plant Biol. 38: 177-186, 2011. Go to original source...
  42. Singh, R., Ranjan, S., Nayaka, S., Pathre, U.V., Shirke, P.A.: Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl. in response to light and water stress. - Acta Physiol. Plant. 35: 1605-1615, 2013. Go to original source...
  43. Soni, V., Strasser, R.J.: Survival strategies cannot be devised, they do exist already: a case study on lichens. - In: Allen, J.E., Gantt, E., Golbeck, J.H., Osmond, B. (ed.): Photosynthesis. Energy from the Sun. Pp. 1567-1571. Springer, Dordrecht 2008.
  44. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 443-480. Taylor and Francis, London 2000.
  45. Váczi, P., Barták, M.: Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. - Biol. Plant. 50: 257-264, 2006. Go to original source...
  46. Valladares, F., Sancho, L.G.: Medullary structure of the Umbilicariaceae. - Lichenologist 27: 189-199, 1995. Go to original source...
  47. Valladares, F., Sancho, L.G., Ascaso, C.: Functional analysis of the intrathalline and intracellular chlorophyll concentrations in the lichen family Umbilicariaceae. - Ann. Bot. 78: 471-477, 1996. Go to original source...
  48. Valladares, F., Sancho, L.G., Ascaso, C.: Water storage in the lichen family Umbilicariaceae. - Bot. Acta 111: 99-107, 1997. Go to original source...
  49. Van der Veen, C.J., Csatho, B.M.: Spectral characteristics of Greenland lichens. - Géogr. phys. Quaternaire 59: 63-73, 2005. Go to original source...
  50. Van Gaalen, K.E., Flanagan, L.B., Peddle, D.R.: Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. - Oecologia 153: 19-28, 2007. Go to original source...
  51. Walker, D.A., Epstein, H.E., Raynolds, M.K., Kuss, P., Kopecky, M.A., Frost, G.V., Daniëls, F.J.A., Leibman, M.O., Moskalenko, N.G., Matyshak, G.V., Khitun, O.V., Khommutov, A.V., Forbes, B.C., Bhatt, U.S., Kadeee, A.N., Vonlanthen, C.M., Tichy, L.: Environment, vegetation and greeness (NDVI) along the North America and Eurasia Arctic transects. - Environ. Res. Lett. 7: 015504, 2012. Go to original source...
  52. Yamano, H., Chen, J., Zhang, Y., Tamura, M.: Relating photosynthesis of biological soil crusts with reflectance: preliminary assessment based on a hydration experiment. - Int. J. Remote Sens. 27: 5393-5399, 2006. Go to original source...
  53. Yebra, M., Dijk, A.V., Leuning, R., Huete, A., Guerschman, J.P.: Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. - Remote Sens. Environ. 129: 250-261, 2013. Go to original source...
  54. Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. - Remote Sens. Environ. 117: 322-337, 2012. Go to original source...