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Abstract. The paper deals with numerical simulation of a compressible flow in time-
dependent 2D domains with a special interest in medical applications to airflow in the
human vocal tract. The mathematical model of this process is described by the compressible
Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary
Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element
method (DGFEM) is used for the space semidiscretization of the governing equations in
the ALE formulation. The time discretization is carried out with the aid of a linearized
semi-implicit method with good stability properties. We present some computational results
for the flow in a channel, representing a model of glottis and a part of the vocal tract, with
a prescribed motion of the channel walls at the position of vocal folds.
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1. Introduction

The simulation of a flow in time dependent domains is a significant part of fluid-

structure interaction. It plays important role in many disciplines. We mention, for

example, construction of airplanes (vibrations of wings) or turbines (blade vibra-

tions), some problems from civil engineering (interaction of wind with constructions
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of bridges, TV towers or cooling towers of power stations), car industry (vibrations

of various elements of a coachwork), but also in medicine (haemodynamics or flow of

air in vocal folds). In a number of these examples the moving medium is a gas, i.e.

the compressible flow. For low Mach number flows incompressible models are often

used (as e.g. in [20]), but in some cases compressibility plays an important role.

In the numerical solution of a compressible flow it is necessary to overcome dif-

ficulties caused by nonlinear convection dominating over diffusion, which leads to

boundary layers and wakes for large Reynolds numbers, shock waves and contact

discontinuities for high Mach numbers and instabilities caused by acoustic effects for

low Mach numbers.

There are various numerical techniques for the solution of a compressible flow—

see, e.g., [13]. It appears that a suitable numerical method for the solution of a

compressible flow, which overcomes successfully the above mentioned obstacles, is

the discontinuous Galerkin finite element method (DGFEM). It employs piecewise

polynomial approximations without any requirement on the continuity on interfaces

between neighbouring elements. The theory of the DGFEM is treated in a number

of works devoted to the solution of scalar equations. Let us mention e.g. [2], [3]

concerned with linear elliptic problems. The DGFEM applied to nonlinear parabolic

problems is analyzed, for example, in [1], [9], [10].

The DGFEM was used for the numerical simulation of the compressible Euler

equations, for example, by Bassi and Rebay in [4], where the space DG discretiza-

tion was combined with explicit Runge-Kutta time discretization. In [5] Baumann

and Oden describe an hp version of the space DG discretization with explicit time

stepping applied to a compressible flow. Van der Vegt and van der Ven apply space-

time discontinuous Galerkin method to the solution of the Euler equations in [21],

where the discrete problem is solved with the aid of a multigrid accelerated pseudo-

time-integration. The papers [8], [12] and [7] are concerned with a semi-implicit

DGFEM unconditionally stable technique for the solution of an inviscid and vis-

cous compressible flow. In [14], this method was extended so that the resulting

scheme is robust with respect to the magnitude of the Mach number. Theoreti-

cal analysis of the DGFEM applied to the solution of a compressible flow is still

missing.

In the present paper we describe the numerical technique for the solution of the

compressible Navier-Stokes equations in time dependent domains. This work forms

the basis for the numerical simulation of the interaction between the compressible

flow and elastic structures. There are very few works concerned with theory of initial-

boundary value problems in time-dependent domains. We can mention, e.g., [23] or

[16]. In the case of a compressible flow, theoretical analysis remains open. This is

the reason why we are concerned with numerical simulation only.
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The main ingredients of the method is the discontinuous Galerkin space semidis-

cretization of the Navier-Stokes equations written in the ALE (arbitrary Lagrangian-

Eulerian) form ([17]), semi-implicit time discretization, suitable treatment of bound-

ary conditions so that they are transparent for acoustic waves at the inlet and outlet

and the shock capturing avoiding Gibbs phenomenon at discontinuities. Numerical

experiments were carried out for a compressible flow in a channel representing a

model of a part of the vocal tract, with a prescribed motion of the channel walls.

They prove the stability and robustness of the method and its applicability to com-

plicated flow problems.

2. Formulation of the problem

We shall be concerned with the numerical solution of a compressible flow in a

bounded domain Ωt ⊂ R2 depending on time t ∈ [0, T ]. Let the boundary of Ωt

consist of three different parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt
, where ΓI is the inlet, ΓO is

the outlet and ΓWt
denotes the impermeable walls that may move in dependence on

time.

The system describing a compressible flow consisting of the continuity equation,

the Navier-Stokes equations and the energy equation can be written in the form

(2.1)
∂w

∂t
+

2
∑

s=1

∂fs(w)

∂xs
=

2
∑

s=1

∂Rs(w,∇w)

∂xs
,

where

w = (w1, . . . , w4)
T = (̺, ̺v1, ̺v2, E)T ∈ R

4,(2.2)

w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

fi(w) = (fi1, . . . , fi4)
T = (̺vi, ̺v1vi + δ1i p, ̺v2vi + δ2i p, (E + p)vi)

T
,

Ri(w,∇w) = (Ri1, . . . , Ri4)
T = (0, τi1, τi2, τi1 v1 + τi2 v2k∂θ/∂xi)

T
,

τij = λdiv v δij + 2µ dij(v), dij(v) =
1

2

( ∂vi

∂xj
+

∂vj

∂xi

)

.

We use the following notation: ̺-density, p-pressure, E-total energy, v = (v1, v2)-

velocity, θ-absolute temperature, γ > 1—Poisson adiabatic constant, cv > 0—specific

heat at constant volume, µ > 0, λ = −2µ/3—viscosity coefficients, k—heat conduc-

tion. The vector-valued function w is called the state vector, the functions fi are

the so-called inviscid fluxes and Ri represent the viscous terms.

The above system is completed by the thermodynamical relations

(2.3) p = (γ − 1)(E − ̺|v|2/2), θ =
(E

̺
−

1

2
|v|2

)

/

cv.
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The complete system is equipped with the initial condition

(2.4) w(x, 0) = w0(x), x ∈ Ω0,

and the following boundary conditions:

a) ̺|ΓI
= ̺D, b) v|ΓI

= vD = (vD1, vD2)
T,(2.5)

c)

2
∑

i,j=1

τijnivj + k
∂θ

∂n
= 0 on ΓI ,(2.6)

a) v|ΓWt
= zD = velocity of the moving wall, b)

∂θ

∂n
|ΓWt

= 0 on ΓWt
,(2.7)

a)
2

∑

i=1

τijni = 0, j = 1, 2, b)
∂θ

∂n
= 0 on ΓO.(2.8)

In order to take into account the time dependence of the domain, we use the so-

called arbitrary Lagrangian-Eulerian ALE technique, proposed in [17]. We define a

reference domain Ω0 and introduce a regular one-to-one ALE mapping of Ω0 onto

Ωt (cf. [17], [20] and [21])

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.

Further, we define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

(2.9)
DA

Dt
f(x, t) =

∂f̃

∂t
(X, t),

where

f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

As a direct consequence of the chain rule we get the relation

DAf

Dt
=

∂f

∂t
+ div(zf) − f div z.
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This leads to the ALE formulation of the Navier-Stokes equations

(2.10)
DA

w

Dt
+

2
∑

s=1

∂gs(w)

∂xs
+ w div z =

2
∑

s=1

∂Rs(w,∇w)

∂xs
,

where

gs(w) := fs(w) − zsw, s = 1, 2,

are the ALE modified inviscid fluxes.

We see that in the ALE formulation of the Navier-Stokes equations the time deriva-

tive ∂w/∂t is replaced by the ALE derivative DAw/Dt, the inviscid fluxes fs are

replaced by the ALE modified inviscid fluxes gs, and a new additional “reaction”

term w divz appears.

3. Discrete problem

3.1. Discontinuous Galerkin space semidiscretization. For the space

semidiscretization we use the discontinuous Galerkin finite element method. We

construct a polygonal approximation Ωht of the domain Ωt. By Tht we denote a

partition of the closure Ωht of the domain Ωht into a finite number of closed triangles

K with mutually disjoint interiors such that Ωht =
⋃

K∈Tht

K.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further,

we introduce the set of all interior faces FI
ht = {Γ ∈ Fht; Γ ⊂ Ω} , the set of all

boundary faces FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} and the set of all “Dirichlet” boundary

faces FD
ht =

{

Γ ∈ FB
ht; a Dirichlet condition is prescribed on Γ

}

. Each Γ ∈ Fht is

associated with a unit normal vector nΓ to Γ. For Γ ∈ FB
ht the normal nΓ has the

same orientation as the outer normal to ∂Ωht. We set d(Γ) = length of Γ ∈ Fht.

For each Γ ∈ FI
ht there exist two neighbouring elements K

(L)
Γ , K

(R)
Γ ∈ Th such that

Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ

and K
(L)
Γ lies in the direction opposite to nΓ. The elements K

(L)
Γ , K

(R)
Γ are called

neighbours. If Γ ∈ FB
ht, then the element adjacent to Γ will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of discontinuous piecewise

polynomial functions

(3.1) Sht = [Sht]
4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht},

where r > 0 is an integer and Pr(K) denotes the space of all polynomials on K of

degree 6 r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ FI
ht.

By ϕ
(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered from the interior and the

exterior of K
(L)
Γ , respectively, and set 〈ϕ〉Γ = (ϕ

(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ − ϕ

(R)
Γ .
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The discrete problem is derived in the following way: We

—multiply system (2.10) by a test function ϕh ∈ Sht,

—integrate over K ∈ Tht,

—use Green’s theorem,

—sum over all elements K ∈ Tht,

—introduce the concept of the numerical flux,

—introduce suitable terms vanishing for a regular exact solution.

In this way we get the following identity:

∑

K∈Tht

∫

K

DAw

Dt
· ϕh dx + bh(w, ϕh) + ah(w, ϕh) + Jh(w, ϕh) + dhw, ϕ)(3.2)

= lh(w, ϕh).

Here

bh(w, ϕh) = −
∑

K∈Tht

∫

K

2
∑

s=1

gs(w) ·
∂ϕh

∂xs
dx(3.3)

+
∑

Γ∈FI

ht

∫

Γ

Hg(w
(L)
Γ , w

(R)
Γ , nΓ) · [ϕh]Γ dS

+
∑

Γ∈FB

ht

∫

Γ

Hg(w
(L)
Γ , w

(R)
Γ , nΓ) · ϕ

(L)
hΓ dS

is the convection form, defined with the aid of a numerical fluxHg. We require that it

is consistent with the fluxes gs : Hg(w, w, n) =
2
∑

s=1
gs(w)ns (n = (n1, n2), |n| = 1),

conservative: Hg(u, w, n) = −Hg(w, u,−n), and locally Lipschitz-continuous.

Further, we define the viscous form

ah(w, ϕh) =
∑

K∈Tht

∫

K

2
∑

s=1

Rs(w,∇w) ·
∂ϕh

∂xs
dx(3.4)

−
∑

Γ∈FI

ht

∫

Γ

2
∑

s=1

〈Rs(w,∇w)〉Γ(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

Rs(w,∇w)(nΓ)s · ϕ
(L)
hΓ dS

(we use the incomplete discretization of viscous terms—the so-called IIPG version),

the interior and boundary penalty terms and the right-hand side form, respectively,
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by

Jh(w, ϕh) =
∑

Γ∈FI

ht

∫

Γ

σ[w] · [ϕh]Γ dS +
∑

Γ∈FD

ht

∫

Γ

σw · ϕ
(L)
hΓ dS,(3.5)

lh(w, ϕh) =
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

σwB · ϕ
(L)
hΓ dS.(3.6)

Here σ|Γ = CW µ/d(Γ) and CW > 0 is a sufficiently large constant. The source form

reads

(3.7) dh(w, ϕh) =
∑

K∈Tht

∫

K

(w · ϕh) div z dx.

The boundary statewB is defined on the basis of the Dirichlet boundary conditions

and extrapolation:

wB =
(

̺D, ̺DvD1, ̺DvD2, cv̺Dθ
(L)
Γ +

1

2
̺D|vD|2

)

on ΓI ,(3.8)

wB = w
(L)
Γ on ΓO,(3.9)

wB =
(

̺
(L)
Γ , ̺

(L)
Γ z1, ̺

(L)
Γ z2, cv̺

(L)
Γ θ

(L)
Γ +

1

2
̺
(L)
Γ |z|2

)

on ΓWt
.(3.10)

The approximate solution is defined as wh(t) ∈ Sht such that

∑

K∈Tht

∫

K

DAwh(t)

Dt
· ϕh dx + bh(wh(t), ϕh) + ah(wh(t), ϕh)(3.11)

+ Jh(wh(t), ϕh) + dh(wh(t), ϕh) = lh(wh(t), ϕh)

holds for all ϕh ∈ Sht, all t ∈ (0, T ), and wh(0) = w0
h is an approximation of the

initial state w0.

3.2. Time discretization. Let us construct a partition 0 = t0 < t1 < t2 < . . .

of the time interval [0, T ] and define the time step τk = tk+1 − tk. We use the

approximations wh(tn) ≈ wn
h ∈ Shtn

, z(tn) ≈ zn, n = 0, 1, . . . and introduce the

function ŵk
h = wk

h ◦ Atk
◦ A−1

tk+1
, which is defined in the domain Ωhtk+1

. In order to

approximate the ALE derivative at time tk+1, we start from its definition and then

use the backward difference:

DAwh

Dt
(x, tk+1) =

∂w̃h

∂t
(X, tk+1)(3.12)

≈
w̃k+1

h (X) − w̃k
h(X)

τk
=

wk+1
h (x) − ŵk

h(x)

τk
,

x = Atk+1
(X) ∈ Ωhtk+1

.
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By the symbol (·, ·) we denote the scalar product in L2(Ωhtk+1
). A possible full

discretization reads

(a) wk+1
h ∈ Shtk+1

,(3.13)

(b)
(wk+1

h − ŵk
h

τk
, ϕh

)

+ bh(wk+1
h , ϕh) + ah(wk+1

h , ϕh)

+ Jh(wk+1
h , ϕh) + dh

(

wk+1
h , ϕh

)

= lh(wk+1
h , ϕh)

∀ϕh ∈ Shtk+1
, k = 0, 1, . . . .

However, this problem forwk+1
h is equivalent to a strongly nonlinear algebraic system

and its solution is rather difficult.

Our goal is to develop a numerical scheme which would be accurate and robust,

with good stability properties and efficiently solvable. Therefore, we proceed sim-

ilarly to [8] and use a partial linearization of the forms bh and ah. This approach

leads to a scheme that requires the solution of only one large sparse linear system

on each time level.

The linearization of the first term of the form bh is based on the relations

gs(w
k+1
h ) = (As(w

k+1
h ) − zk+1

s I)wk+1
h ≈ (As(ŵ

k
h) − zk+1

s I)wk+1
h ,

where As(w) is the Jacobi matrix of fs(w), cf. [13]. The second term of bh is

linearized with the aid of the Vijayasundaram numerical flux (cf. [22]) defined in the

following way. Taking into account the definition of gs, we have

(3.14)
Dgs(w)

Dw
=

Dfs(w)

Dw
− zsI = As − zsI,

and we can write

(3.15) Pg(w, n) =

2
∑

s=1

Dgs(w)

Dw
ns =

2
∑

s=1

(Asns − zsnsI) .

By [13], this matrix is diagonalizable. It means that there exists a nonsingular matrix

T = T(w, n) such that

(3.16) Pg = T

V

T
−1,

V

= diag(λ1, . . . , λ4),

where λi = λi(w, n) are the opposite eigenvalues of the matrix Pg. Now we define

the “positive” and “negative” parts of the matrix Pg by

(3.17) P
±
g = T

V±
T
−1,

V± = diag(λ±
1 , . . . , λ±

4 ),
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where λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we introduce the

modified Vijayasundaram numerical flux (cf. [22] or [13]) as

(3.18) Hg(wL, wR, n) = P
+
g

(wL + wR

2
, n

)

wL + P
−
g

(wL + wR

2
, n

)

wR.

Using the above definition of the numerical flux, we introduce the approximation

Hg(w
k+1(L)
hΓ , w

k+1(R)
hΓ , nΓ) ≈ P

+
g (〈ŵk

h〉Γ, nΓ)w
k+1(L)
hΓ + P

−
g (〈ŵk

h〉Γ, nΓ)ŵ
k+1(R)
hΓ .

In this way we get the form

b̂h(ŵk
h, wk+1

h , ϕh)(3.19)

= −
∑

K∈Tht
k+1

∫

K

2
∑

s=1

(As(ŵ
k
h(x)) − zk+1

s (x))I)wk+1
h (x)) ·

∂ϕh(x)

∂xs
dx,

+
∑

Γ∈FI

ht
k+1

∫

Γ

(P+
g (〈ŵk

h〉, nΓ)w
k+1(L)
h + P

−
g (〈ŵk

h〉, nΓ)w
k+1(R)
h ) · [ϕh] dS

+
∑

Γ∈FB

ht
k+1

∫

Γ

(P+
g (〈ŵk

h〉, nΓ)w
k+1(L)
h + P

−
g (〈ŵk

h〉, nΓ)ŵ
k(R)
h ) · ϕh dS.

The linearization of the form ah is based on the fact that Rs(wh,∇wh) is linear

in ∇w and nonlinear in w. We get the linearized viscous form

âh(ŵk
h, wk+1

h , ϕh) =
∑

K∈Tht
k+1

∫

K

2
∑

s=1

Rs(ŵ
k
h,∇wk+1

h ) ·
∂ϕh

∂xs
dx(3.20)

−
∑

Γ∈FI

ht
k+1

∫

Γ

2
∑

s=1

〈

Rs(ŵ
k
h,∇wk+1)

〉

(nΓ)s · [ϕh] dS

−
∑

Γ∈FD

ht
k+1

∫

Γ

2
∑

s=1

Rs(ŵ
k
h,∇wk+1

h )(nΓ)s · ϕh dS.

3.3. Limiting procedure. In high-speed inviscid gas flow with large Mach num-

bers, discontinuities—called shock waves or contact discontinuities—appear. In vis-

cous high-speed flow these discontinuities may be smeared due to viscosity and heat

conduction. In both cases, near shock waves and contact discontinuities, the so-

called Gibbs phenomenon, manifested by nonphysical spurious overshoots and un-

dershoots, usually occurs in the numerical solution. In order to avoid this undesirable
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phenomenon, it is necessary to apply a suitable limiting procedure. Here we use the

approach proposed in [14] based on the discontinuity indicator

(3.21) gk(K) =

∫

∂K

[ ˆ̺k
h]2 dS

/

(hK |K|3/4), K ∈ Thtk+1
,

introduced in [11]. By [ ˆ̺h
h] we denote the jump of the function ˆ̺k

h on the boundary ∂K

and |K| denotes the area of the element K. Then we define the discrete discontinuity

indicator

(3.22) Gk(K) = 0 if gk(K) < 1, Gk(K) = 1 if gk(K) > 1, K ∈ Thtk+1

and the artificial viscosity forms

(3.23) β̂h(ŵk
h, wk+1

h , ϕh) = ν1

∑

K∈Tht
k+1

hKGk(K)

∫

K

∇wk+1
h · ∇ϕh dx

and

(3.24) Ĵh(ŵk
h, wk+1

h , ϕh) = ν2

∑

Γ∈FI

ht
k+1

1

2
(Gk(K

(L)
Γ ) + Gk(K

(R)
Γ )

∫

Γ

[wk+1
h ] · [ϕh] dS,

with parameters ν1, ν2 = O(1).

Then the resulting scheme has the following form:

(a) wk+1
h ∈ Shtk+1

,(3.25)

(b)
(wk+1

h − ŵk
h

τk
, ϕh

)

+ b̂h(ŵk
h, wk+1

h , ϕh) + âh(ŵk
h, wk+1

h , ϕh)

+ Jh(wk+1
h , ϕh) + dh

(

wk+1
h , ϕh

)

+ β̂h(ŵk
h, wk+1

h , ϕh) + Ĵh(ŵk
h, wk+1

h , ϕh) = l(wk
B, ϕ)

∀ϕh ∈ Shtk+1
, k = 0, 1, . . . .

This method successfully overcomes problems with the Gibbs phenomenon in the

context of the semi-implicit scheme. It is important that the indicator Gk(K) van-

ishes in regions where the solution is regular and, therefore, the numerical solution

does not contain any nonphysical entropy production in these regions.

3.4. Treatment of boundary states in the form b̂h. If Γ ∈ FB
htk+1

, it is

necessary to specify the boundary state ŵ
k(R)
hΓ appearing in the numerical flux Hg
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in the definition of the inviscid form b̂h. For simplicity we shall use the notation

w(R) for values of the function ŵ
k(R)
hΓ which should be determined at individual

integration points on the face Γ. Similarly, w(L) will denote the values of ŵ
k(L)
hΓ at

the corresponding points.

On the inlet and outlet, which are assumed fixed, we proceed in the same way as

in [14], Section 4. Using the rotational invariance, we transform the Euler equations

∂w

∂t
+

2
∑

s=1

∂fs(w)

∂xs
= 0

to the coordinates x̃1, parallel with the normal direction n = (n1, n2) = nΓ to the

boundary, and x̃2, tangential to the boundary, neglect the derivative with respect to

x̃2 and linearize the system around the state q(L) = Q(n)w(L), where

(3.26) Q(n) =









1, 0, 0, 0

0, n1, n2, 0

0, −n2, n1, 0

0, 0, 0, 1









is the rotational matrix. Then we obtain the linear system

(3.27)
∂q

∂t
+ A1(q

(L))
∂q

∂x̃1
= 0

for the transformed vector-valued function q = Q(n)w, considered in the set

(−∞, 0) × (0,∞) and equipped with the initial and boundary conditions

(3.28) q(x̃1, 0) = q(L), x̃1 < 0, and q(0, t) = q(R), t > 0.

The goal is to choose q(R) in such a way that this initial-boundary value problem

is well posed, i.e. has a unique solution. The method of characteristics leads to the

following process:

Let us put q∗ = Q(n)w∗, wherew∗ is a given boundary state at the inlet or outlet.

We calculate the eigenvectors rs corresponding to the eigenvalues λs, s = 1, . . . , 4,

of the matrix A1(q
(L)), arrange them as columns in the matrix T and calculate T−1.

Now we set

(3.29) α = T
−1q(L), β = T

−1q∗

and define the state q(R) by the relations

(3.30) q(R) :=

4
∑

s=1

γsrs, γs =

{

αs, λs > 0,

βs, λs < 0.
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Finally, the sought boundary state w(R) is defined as

(3.31) w(R) = Q−1(n)q(R).

On the impermeable moving wall we prescribe the normal component of the ve-

locity

(3.32) v · n = z · n,

where n is the unit outer normal to ΓWt
and z is the wall velocity. This means that

two eigenvalues of Pg(w, n) vanish, one is positive and one is negative. Then, in

analogy to [13], Section 3.3.6, we should prescribe one quantity, namely v · n, and

extrapolate three quantities—tangential velocity, density and pressure.

However, here we define the numerical flux on ΓWt
as the physical flux through

the boundary with the assumption (3.32) taken into account. Thus, on ΓWt
we write

2
∑

s=1

gs(w)ns = (v · n − z · n)w + p (0, n1, n2, v · n)T(3.33)

= p(0, n1, n2, z · n)T =: Hg.

R em a r k. In practical computations, integrals appearing in the definitions of

the forms âh, b̂h, . . . are evaluated with the aid of quadrature formulas.

The numerical scheme developed can also be used for the numerical solution of

inviscid flow, if we set µ = λ = k = 0. See [14], [18].

The linear algebraic system equivalent to (3.25) (b) is solved either by a direct

solver UMFPACK ([6]) or by the GMRES method with a block diagonal precondi-

tioning.

4. Numerical experiment

Here we present results of numerical experiments carried out for the flow in a

channel with geometry inspired by the shape of the human glottis and a part of

supraglottal spaces as shown in Figure 1. The walls are moving in order to mimic

the vibrations of vocal folds during the voice production. The lower channel wall

between the points A and B and the upper wall symmetric with respect to the axis

of the channel are vibrating up and down periodically with frequency 100Hz. This

movement is interpolated into the domain resulting in the ALE mapping At. For the

same geometry and similar data the computation was also carried out in [19] with

the use of the finite volume method and assuming the symmetry of the flow field.

12
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Figure 1. Computational domain (cf. [19]).

The width of the channel at the inlet (left part of the boundary) is H = 0.016m

and its length is L = 0.16m. The width of the narrowest part of the channel (at the

point C) oscillates between 0.0004m and 0.0028m. We consider the following input

parameters and boundary conditions: magnitude of the inlet velocity vin = 4m/s,

the viscosity µ = 15 · 10−6 kg m−1s−1, the inlet density ̺in = 1.225 kgm−3, the

outlet pressure pout = 97611Pa, the Reynolds number Re = ̺invinH/µ = 5227,

heat conduction coefficient k = 2.428 · 10−2 kg m s−2K−1, the specific heat cv =

721.428 m2s−2K−1, the Poisson adiabatic constant γ = 1.4. The inlet Mach number

is Min = 0.012. In the numerical tests, piecewise quadratic elements (r = 2) are

used.

Figure 2. Streamlines at time instants t = 29, 31, 33ms.

Figures 2 and 3 show the computed streamlines at different time instants t =

29, 31, 33, 34, 36, 37, 39ms during the fourth period of the motion. In the solution

we can observe large vortex formations convected through the domain. The flow

field is not periodic and not axisymmetric, although the computational domain is

axisymmetric and the motion of the channel walls is periodic and symmetric as well.
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Figure 3. Streamlines at time instants t = 34, 36, 37, 39ms.

5. Conclusion

We have presented an efficient numerical scheme for the solution of the com-

pressible Navier-Stokes equations in time dependent domains. It is based on several

important ingredients:

⊲ the formulation of the Navier-Stokes system with the use of the ALE method,

⊲ the application of the discontinuous Galerkin method for the space discretiza-

tion,

⊲ special treatment of boundary conditions,

⊲ semi-implicit linearized time discretization,

⊲ suitable limiting of the order of accuracy in the vicinity of discontinuities.

boundary.

Numerical tests have proved that the developed method is practically uncondi-

tionally stable. This means that the length of the time step is limited only by the

requirement of the accuracy in time resolution. Moreover, it is robust with respect

to the magnitude of the Mach number.

Future work will be concentrated on the following topics:

⊲ further analysis of various treatments of boundary conditions,

14



⊲ realization of a remeshing in case of closing the channel,

⊲ coupling of the method developed with the solution of equations describing flow

induced vibrations of structures.

References

[1] D.N.Arnold: An interior penalty finite element method with discontinuous elements.
SIAM J. Numer. Anal. 19 (1982), 742–760. zbl

[2] D.N.Arnold, F.Brezzi, B.Cockburn, D.Marini: Discontinuos Galerkin methods for el-
liptic problems. Discontinuous Galerkin methods. Theory, Computation and Applica-
tions. Lecture Notes in Computational Science and Engineering 11 (Cockburn, B., et
al., eds.). Springer, Berlin, 2000, pp. 89–101. zbl

[3] D.N.Arnold, F. Brezzi, B. Cockburn, D.Marini: Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001), 1749–1779. zbl

[4] F.Bassi, S. Rebay: High-order accurate discontinuous finite element solution of the 2D
Euler equations. J. Comput. Phys. 138 (1997), 251–285. zbl

[5] C.E. Baumann, J. T.Oden: A discontinuous hp finite element method for the Euler and
Navier-Stokes equations. Int. J. Numer. Methods Fluids 31 (1999), 79–95. zbl

[6] T.A. Davis, I. S. Duff: A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Transactions on Mathematical Software 25 (1999), 1–20. zbl

[7] V.Dolejší: Semi-implicit interior penalty discontinuous Galerkin methods for viscous
compressible flows. Commun. Comput. Phys. 4 (2008), 231–274.

[8] V.Dolejší, M.Feistauer: A semi-implicit discontinuous Galerkin finite element method
for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198 (2004),
727–746. zbl

[9] V.Dolejší, M.Feistauer: Error estimates of the discontinuous Galerkin method for non-
linear nonstationary convection-diffusion problems. Numer. Func. Anal. Optimiz. 26
(2005), 349–383. zbl

[10] V.Dolejší, M.Feistauer, J. Hozman: Analysis of semi-implicit DGFEM for nonlinear
convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech.
Engrg. 196 (2007), 2813–2827. zbl

[11] V.Dolejší, M.Feistauer, C. Schwab: On some aspects of the discontinuous Galerkin finite
element method for conservation laws. Math. Comput. Simul. 61 (2003), 333–346. zbl

[12] M.Feistauer, V.Dolejší, V.Kučera: On the discontinuous Galerkin method for the sim-
ulation of compressible flow with wide range of Mach numbers. Comput. Vis. Sci. 10
(2007), 17–27.

[13] M.Feistauer, J. Felcman, I. Straškaraba: Mathematical and Computational Methods for
Compressible Flow. Clarendon Press, Oxford, 2003. zbl

[14] M.Feistauer, V.Kučera: On a robust discontinuous Galerkin technique for the solution
of compressible flow. J. Comput. Phys. 224 (2007), 208–221. zbl

[15] L.Krivodonova, M.Berger: High-order accurate implementation of solid wall boundary
conditions in curved geometries. J. Comput. Phys. 211 (2006), 492–512. zbl

[16] J.Neustupa: Existence of a weak solution to the Navier-Stokes equation in a general
time-varying domain by the Rothe method. Math. Meth. Appl. Sci. 32 (2009), 653–683. zbl

[17] T.Nomura, T. J. R.Hughes: An arbitrary Lagrangian-Eulerian finite element method for
interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Engrg. 95 (1992),
115–138. zbl

[18] J.Prokopová: Numerical solution of compressible flow. Master thesis, Charles University,
Praha, 2008.

15

http://www.emis.de/MATH-item?0482.65060
http://www.emis.de/MATH-item?0948.65127
http://www.emis.de/MATH-item?1008.65080
http://www.emis.de/MATH-item?0902.76056
http://www.emis.de/MATH-item?0985.76048
http://www.emis.de/MATH-item?0962.65027
http://www.emis.de/MATH-item?1116.76386
http://www.emis.de/MATH-item?1078.65078
http://www.emis.de/MATH-item?1121.76033
http://www.emis.de/MATH-item?1013.65108
http://www.emis.de/MATH-item?1028.76001
http://www.emis.de/MATH-item?1114.76042
http://www.emis.de/MATH-item?1138.76403
http://www.emis.de/MATH-item?1160.35494
http://www.emis.de/MATH-item?0756.76047


[19] P.Punčochářová, J. Fürst, K.Kozel, J. Horáček: Numerical solution of compressible flow
with low Mach number through oscillating glottis. Proceedings of the 9th International
Conference on Flow-Induced Vibration (FIV 2008), Praha, Institute of Thermomechan-
ics AS CR, 2008, pp. 135–140.

[20] P. Sváček, M.Feistauer, J. Horáček: Numerical simulation of flow induced airfoil vibra-
tions with large amplitudes. J. Fluids Structures 23 (2007), 391–411.

[21] J. J.W. van der Vegt, H. van der Ven: Space-time discontinuous Galerkin finite element
method with dynamic grid motion for inviscid compressible flow. J. Comput. Phys. 182
(2002), 546–585. zbl

[22] G.Vijayasundaram: Transonic flow simulation using upstream centered scheme of Go-
dunov type in finite elements. J. Comput. Phys. 63 (1986), 416–433.

[23] J.P. Zolésio: Approximation for the wave equation in a moving domain. Proceedings of
the conference Control of Partial Differential Equations. IFIP WG 7.2, Marcel Dekker,
Lect. Notes Pure Appl. Math. 165, New York, 1994, pp. 271–279. zbl

Authors’ addresses: Miloslav Feistauer, Václav Kučera, Jaroslava Prokopová, Charles
University Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Pra-
ha 8, Czech Republic, e-mails: feist@karlin.mff.cuni.cz, vaclav.kucera@email.cz,
jarkaprokop@post.cz; Jaromír Horáček, Institute of Thermomechanics, Academy of
Sciences of the Czech Republic, Dolejškova 5, 182 00 Praha 8, Czech Republic, e-mail:
jaromirh@it.cas.cz.

16

http://www.emis.de/MATH-item?1057.76553
http://www.emis.de/MATH-item?0831.35095

