Biologia plantarum 60:251-260, 2016 | DOI: 10.1007/s10535-016-0590-x

Identification of microRNAs involved in chilling response of maize by high-throughput sequencing

S. P. Li1, H. X. Dong1, G. Yang1, Y. Wu1, S. Z. Su1, X. H. Shan1, H. K. Liu1, J. Y. Han1, J. B. Liu1, Y. P. Yuan1,*
1 College of Plant Science, Jilin University, Changchun, P.R. China

Chilling stress impedes growth, development, and productivity of maize (Zea mays L.). MicroRNAs (miRNAs) play critical roles in plant responses to biotic and abiotic stresses at the post-transcriptional level. Although some miRNAs have been identified in maize, little is known about the miRNAs that accumulate differently in the response to chilling stress. In this paper, we combined Illumina sequencing with Northern blot to identify chilling-responsive miRNAs in maize. Novel miRNAs (36) were predicted and some were validated. Twenty-eight known miRNAs and 24 novel miRNAs were found to be differentially expressed under various chilling (6 ºC) treatment times, and most of them were down-regulated after the chilling treatments. Northern blot and real time quantitative polymerase chain reaction proved that miR408b and miRn138 were up-regulated, miR168a, miR529, miRn120, miRn44, and miRn22 were down-regulated, miR166b, miR396c, and miRn59 undulated under 2, 6, and 12 h of the chilling stress. Analysis agriGO based on the target genes of differentially expressed miRNAs indicates that it might change hydrolase and phosphatase activities, nucleic acid metabolisms, and many cellular components to adapt to the chilling stress.

Keywords: gene expression; Illumina sequencing; Northern blot; real time-qPCR; Zea mays
Subjects: microRNA; chilling; gene expression; Illumina sequencing; Northern blot; maize
Species: Zea mays

Received: July 1, 2015; Revised: October 9, 2015; Accepted: October 14, 2015; Published: June 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Li, S.P., Dong, H.X., Yang, G., Wu, Y., Su, S.Z., Shan, X.H., ... Yuan, Y.P. (2016). Identification of microRNAs involved in chilling response of maize by high-throughput sequencing. Biologia plantarum60(2), 251-260. doi: 10.1007/s10535-016-0590-x.
Download citation

Supplementary files

Download filebpl-201602-0006_S1.pdf

File size: 1.53 MB

References

  1. Andorf, C.M., Lawrence, C.J., Harper, L.C., Schaeffer, M.L., Campbell, D.A., Sen, T.Z.: The Locus Lookup tool at MaizeGDB: identification of genomic regions in maize by integrating sequence information with physical and genetic maps. - Bioinformatics 26: 434-436, 2010. Go to original source...
  2. Audic, S., Claverie, J.M.: The significance of digital gene expression profiles. - Genome Res. 7: 986-995, 1997. Go to original source...
  3. Burda, P., Aebi, M.: The dolichol pathway of N-linked glycosylation. - Biochim. biophys. Acta 1426: 239-257, 1999. Go to original source...
  4. Burkhead, J.L., Reynolds, K.A., Abdel-Ghany, S.E., Cohu, C.M., Pilon, M.: Copper homeostasis. - New Phytol. 182: 799-816, 2009. Go to original source...
  5. Carroll, A., Mansoori, N., Li, S., Lei, L., Vernhettes, S., Visser, R.G., Somerville, C., Gu, Y., Trindade, L.M.: Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. - Plant Physiol. 160: 726-737, 2012. Go to original source...
  6. Chen, L., Zhang, Y., Ren, Y., Xu, J., Zhang, Z., Wang, Y.: Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. - Biochem. biophys. Res. Commun. 417: 892-896, 2012. Go to original source...
  7. Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., Ma, L., Chen, J.Y., Wang, J., Zen, K., Zhang, J., Zhang, C.Y.: Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. - Genome Biol. 10: R78, 2009. Go to original source...
  8. Chiou, T.J.: The role of microRNAs in sensing nutrient stress. - Plant Cell Environ. 30: 323-332, 2007. Go to original source...
  9. Chuck, G., Whipple, C., Jackson, D., Hake, S.: The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. - Development 137: 1243-1250, 2010. Go to original source...
  10. Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., Zheng, Y.: Differential expression of miRNAs in response to salt stress in maize roots. - Ann. Bot. 103: 29-38, 2009. Go to original source...
  11. Du, Z., Zhou, X., Ling, Y., Zhang, Z., Su, Z.: agriGO: a GO analysis toolkit for the agricultural community. - Nucl. Acids Res. 38: W64-W70, 2010. Go to original source...
  12. Ge, W., Song, Y., Zhang, C., Zhang, Y., Burlingame, A.L., Guo, Y.: Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. - Biochim. biophys. Acta 1814: 1964-1973, 2011.
  13. Gupta, O.P., Meena, N.L., Sharma, I., Sharma, P.: Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. - Mol. Biol. Rep. 41: 4623-4629, 2014. Go to original source...
  14. Haselbeck, A., Tanner, W.: Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. - Proc. nat. Acad. Sci. USA 79:1520-1524, 1982. Go to original source...
  15. Jadid, N., Mialoundama, A.S., Heintz, D., Ayoub, D., Erhardt, M., Mutterer, J., Meyer, D., Alioua, A., Van Dorsselaer, A., Rahier, A., Camara, B., Bouvier, F.: DOLICHOL PHOSPHATE MANNOSE SYNTHASE1 mediates the biogenesis of isoprenyl-linked glycans and influences development, stress response, and ammonium hypersensitivity in Arabidopsis. - Plant Cell 23: 1985-2005, 2011.
  16. Jia, X., Ren, L., Chen, Q.J., Li, R., Tang, G.: UV-B-responsive microRNAs in Populus tremula. - J Plant Physiol. 166: 2046-2057, 2009. Go to original source...
  17. Jones-Rhoades, M.W., Bartel, D.P., Bartel, B.: MicroRNAs and their regulatory roles in plants. - Annu. Rev. Plant Biol. 57: 19-53, 2006. Go to original source...
  18. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., Timmermans, M.C.: microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. - Nature 428: 84-88, 2004. Go to original source...
  19. Kang, M., Zhao, Q., Zhu, D., Yu, J.: Characterization of microRNAs expression during maize seed development. - BMC Genomics 13: 360, 2012. Go to original source...
  20. Kim, J.H., Choi, D.S., Kende, H.: The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. - Plant J. 36: 94-104, 2003. Go to original source...
  21. Kim, S.W., Li, Z., Moore, P.S., Monaghan, A.P., Chang, Y., Nichols, M., John, B.: A sensitive non-radioactive Northern blot method to detect small RNAs. - Nucl. Acids Res. 38: e98, 2010. Go to original source...
  22. Lee, R.C., Feinbaum, R.L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. - Cell 75: 843-854, 1993. Go to original source...
  23. Li, J.S., Fu, F.L., An, M., Zhou, S.F., She, Y.H., Li, W.C.: Differential expression of microRNAs in eesponse to drought stress in maize. - J. Integr. Agr. 12: 1414-1422, 2013. Go to original source...
  24. Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment program. - Bioinformatics 24: 713-714, 2008. Go to original source...
  25. Liu, D., Song, Y., Chen, Z., Yu, D.: Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. - Physiol. Plant 136: 223-236, 2009. Go to original source...
  26. Liu, H.H., Tian, X., Li, Y.J., Wu, C.A., Zheng, C.C.: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. - RNA 14: 836-843, 2008. Go to original source...
  27. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. - Methods 25: 402-408, 2001. Go to original source...
  28. Llave, C., Xie, Z., Kasschau, K.D., Carrington, J.C.: Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. - Science 297: 2053-2056, 2002. Go to original source...
  29. Lv, D.K., Bai, X., Li, Y., Ding, X.D., Ge, Y., Cai, H., Ji, W., Wu, N., Zhu, Y.M.: Profiling of cold-stress-responsive miRNAs in rice by microarrays. - Gene 459: 39-47, 2010. Go to original source...
  30. Matsushima, R., Maekawa, M., Kusano, M., Kondo, H., Fujita, N., Kawagoe, Y., Sakamoto, W.: Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. - Plant Physiol. 164: 623-636, 2014. Go to original source...
  31. Matzke, M., Kanno, T., Claxinger, L., Huettel, B., Matzke, A.J.M.: RNA-mediated chromatin-based silencing in plants. - Curr. Opin. Cell Biol. 21: 367-376, 2009. Go to original source...
  32. Miedema, P.: The effects of low temperature on Zea mays L. - Adv. Agron. 35: 93-129, 1982. Go to original source...
  33. Orlean, P., Albright, C., Robbins, P.W.: Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. - J. biol. Chem. 263: 17499-17507, 1988.
  34. Pei, L., Jin, Z., Li, K., Yin, H., Wang, J., Yang, A.: Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. - Plant Physiol. Biochem. 70: 221-234, 2013. Go to original source...
  35. Qi, X., Bao, F.S., Xie, Z.: Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. - PLoS ONE 4: e4971, 2009. Go to original source...
  36. Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A. Trush, V., Quackenbush, J.: TM4: a free, open-source system for microarray data management and analysis. - Biotechniques 34: 374-378, 2003. Go to original source...
  37. Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D.N., Fesik, S.W.: Specificity of short interfering RNA determined through gene expression signatures. - Proc. nat. Acad. Sci. USA 100: 6347-6352, 2003. Go to original source...
  38. Sunkar, R., Girke, T., Jain, P.K., Zhu, J.K.: Cloning and characterization of microRNAs from rice. - Plant Cell 17: 1397-1411, 2005. Go to original source...
  39. Sunkar, R., Zhu, J.K.: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. - Plant Cell 16: 2001-2019, 2004.
  40. Trevisan, S., Nonis, A., Begheldo, M., Manoli, A., Palme, K., Caporale, G., Ruperti, B., Quaggiotti, S.: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. - Plant Cell Environ. 35: 1137-1155, 2012. Go to original source...
  41. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F., Hellens, R.P.: A highly sensitive RT-PCR method for detection and quantification of microRNAs. - Plant Methods 3: 12, 2007. Go to original source...
  42. Vaucheret, H., Mallory, A.C., Bartel, D.P.: AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. - Mol. Cell 22: 129-136, 2006. Go to original source...
  43. Vaz, C., Ahmad, H.M., Sharma, P., Gupta, R., Kumar, L., Kulshreshtha, R., Bhattacharya, A.: Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. - BMC Genomics 11: 288, 2010. Go to original source...
  44. Wang, L.W., Liu, H.H., Li, D.T., Chen, H.B.: Identification and characterization of maize microRNAs involved in the very early stage of seed germination. - BMC Genomics 12: 154, 2011. Go to original source...
  45. Xu, C., Yang, R.F., Li, W.C., Fu, F.L.: Identification of 21 microRNAs in maize and their differential expression under drought stress. - Afr. J. Biotechnol. 9: 4741-4753, 2010.
  46. Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S.J., Zhang, S., Bi, Y., Xie, C.: Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. - PLoS ONE 6: e28009, 2011. Go to original source...
  47. Zhang, J.Y., Xu, Y.Y., Huan, Q., Chong, K.: Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. - BMC Genomics 10: 449, 2009a. Go to original source...
  48. Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., Maher, C.A., Guill, K., McMullen, M.D., Ware, D.: A genome-wide characterization of microRNA genes in maize. - PLoS Genet. 5: e1000716, 2009b. Go to original source...
  49. Zhang, Z., Lin, H., Shen, Y., Gao, J., Xiang, K., Liu, L., Ding, H., Yuan, G., Lan, H., Zhou, S., Zhao, M., Gao, S., Rong, T., Pan, G.: Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. - Mol. Biol. Rep. 39: 8137-8146, 2012. Go to original source...
  50. Zhao, M., Tai, H., Sun, S., Zhang, F., Xu, Y., Li, W.X.: Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. - PLoS ONE 7: e29669, 2012. Go to original source...
  51. Zhao, Y.P., Xu, Z.H., Mo, Q.C., Zou, C., Li, W.X., Xu, Y.B., Xie, C.X.: Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. - Ann. Bot. 112: 633-642, 2013. Go to original source...
  52. Zhong, R., Morrison, W.H., Freshour, G.D., Hahn, M.G., Ye, Z.H.: Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. - Plant Physiol. 132: 786-795, 2003. Go to original source...
  53. Zhou, X.F., Wang, G.D., Sutoh, K., Zhu, J.K., Zhang, W.X.: Identification of cold-inducible microRNAs in plants by transcriptome analysis. - Biochim. biophys. Acta 1779: 780-788, 2008. Go to original source...