Biologia plantarum 57:49-55, 2013 | DOI: 10.1007/s10535-012-0265-1

Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development

C. Aza-González1, L. Herrera-Isidrón1, H. G. Núñez-Palenius1, O. Martínez De La Vega2, N. Ochoa-Alejo1,3,*
1 Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
2 Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
3 Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México

Chili pepper (Capsicum annuum L.) cv. Árbol and Uvilla fruits differing in anthocyanin contents were analyzed to characterize the accumulation patterns. The maximum accumulation of the aglycon delphinidin occurred 20 days postanthesis (DPA) with higher content in Uvilla than in Árbol fruits. Regarding the cDNA library, 9 186 cDNA clones were selected. The clones with high homology to genes concerning anthocyanin biosynthesis, such as encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP Glc-flavonoid 3-O-gluco-syl transferase (UFGT), and also those possibly involved in anthocyanin transport into the vacuoles, an anthocyanin permease (ANP) and a glutathione S-transferase (GST) were used for gene expression analysis. In general, the expression of all investigated genes was developmentally regulated in both Árbol and Uvilla. CHS and CHI transcripts were expressed at the maximal level at 10 DPA, and then consistently declined throughout fruit development. F3'5'H, DFR, UFGT and GST expression exhibited a positive correlation with anthocyanin accumulation, and the highest transcript levels were detected prior to or by the time of maximum anthocyanin accumulation, depending on the chili pepper type. Pericarp fruit tissues from cv. Tampiqueño 74, an anthocyanin non-accumulator, also showed CHS, CHI, F3H, ANS and ANP expression at some developmental stages.

Keywords: anthocyanin transport; Capsicum annuum; cDNA library; pericarp
Subjects: anthocyanin accumulation; anthocyanin transport; chili pepper; fruit pericarp; fruit development; anthocyanin biosynthesis-related genes; gene expression

Received: January 11, 2011; Accepted: June 16, 2012; Published: March 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Aza-González, C., Herrera-Isidrón, L., Núñez-Palenius, H.G., De La Vega, O.M., & Ochoa-Alejo, N. (2013). Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biologia plantarum57(1), 49-55. doi: 10.1007/s10535-012-0265-1.
Download citation

References

  1. Ahmed, N., Maekawa, M., Noda, K.: Anthocyanin accumulation and expression pattern of anthcyanin biosynthesis gene in developing wheat coleoptiles. - Biol Plant. 53: 223-228, 2009. Go to original source...
  2. Ben Chaim, A., Borovsky, Y., De Jong, W., Paran, I.: Linkage of the A locus for the presence of anthocyanin and fs10.1 a major fruit-shape QTL in pepper. - Theor. appl. Genet. 106: 889-894, 2003. Go to original source...
  3. Borovsky, Y., Oren-Shamir, M., Ovadia, R., De Jong, W., Paran, I.: The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. - Theor. appl. Genet. 109: 23-29, 2004. Go to original source...
  4. Britsch, L., Dedio, J., Saedler, H., Forkmann, G.: Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. - Eur. J. Biochem. 217: 745-754, 1993. Go to original source...
  5. Castellarin, S.D., Di Gaspero, G., Marconi, R., Nonis, A., Peterlunger, E., Paillard, S., Adam-Blondon, A.F., Testolin, R.: Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'- hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. - BMC Genomics 7: 1-12, 2006. Go to original source...
  6. Conn, S., Curtin, C., Bézier, A., Franco, C., Zhang, W.: Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. - J. exp. Bot. 59: 3621-3634, 2008. Go to original source...
  7. De Jong, W.S., Eannetta, N.T., De Jong, D.M., Bodis, M.: Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. - Theor. appl. Genet. 108: 423-432, 2004. Go to original source...
  8. Deluc, L., Bogs, J., Walker, A.R., Ferrier, T., Decendit, A., Merillon, J.M., Robinson, S.P., Barrieu, F.: The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. - Plant Physiol. 147: 2041-2053, 2008. Go to original source...
  9. De Vetten, N., Quattrocchio, F., Mol, J., Koes, R.: The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. - Genes Dev. 11: 1422-1434, 1997. Go to original source...
  10. Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty- Amma, S., Allan, A.C.: Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. - Plant J. 49: 414-427, 2007. Go to original source...
  11. Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Muñoz-Blanco, J., Schwab, W.: Redirection of flavonoid biosynthesis through the downregulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. - Plant Physiol. 146: 1528-1539, 2008. Go to original source...
  12. Grotewold, E.: The genetics and biochemistry of floral pigments. - Annu. Rev. Plant Biol. 57: 761-780, 2006. Go to original source...
  13. Holton, T.A., Cornish, E.: Genetics and biochemistry of anthocyanin biosynthesis. - Plant Cell 7: 1071-1083, 1995. Go to original source...
  14. Jaakola, L., Määttä, K., Pirttilä, A.M., Törrönenm, R., Kärenlampi, S., Hohtola, A.: Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. - Plant Physiol. 130: 729-739, 2002. Go to original source...
  15. Jez, J.M., Bowman, M.E., Dixon, R.A., Noel, J.P.: Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. - Nat. Struct. Biol. 7: 786-791, 2000.
  16. Kitamura, S., Shikazono, N., Tanaka, A.: TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. - Plant J. 37: 104-114, 2004. Go to original source...
  17. Lamy, S., Lafleur, R., Bédard, V., Moghrabi, A., Barrette, S., Gingras, D., Béliveau, R.: Anthocyanidins inhibit migration of glioblastoma cells: Structure-activity relationship and involvement of the plasminolytic system. - J. cell. Biochem. 100: 100-111, 2007. Go to original source...
  18. Lightbourn, G.J., Griesbach, R.J., Novotny, J.A., Clevidence, B.A., Rao, D.D., Stommel, J.R.: Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. - J. Hered. 99: 105-111, 2008. Go to original source...
  19. Lo Piero, A.R., Puglisi, I., Rapisarda, P., Petrone, G.: Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. - J. agr. Food Sci. 53: 9083-9088, 2005.
  20. Marin, A., Ferreres, F., Tomás-Barberán, F.A., Gil, M.I.: Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). - J. agr. Food Chem. 52: 3861-3869, 2004. Go to original source...
  21. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V.: A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. - Nature 375: 397-400, 1995. Go to original source...
  22. Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J., Wagner, D.R.: Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. - Plant Cell 15: 1689-1703, 2003. Go to original source...
  23. Morita, Y., Saitoh, M., Hoshino, A., Nitasaka, E., Iida, S.: Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. - Plant Cell Physiol. 7: 457-470, 2006. Go to original source...
  24. Mueller, L.A., Goodman, C.D., Silady, R.A., Walbot, V.: AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. - Plant Physiol. 123: 1561-1570, 2000. Go to original source...
  25. Nyman, N.A., Kumpulainen, J.T.: Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. - J. agr. Food Chem. 49: 4183-4187, 2001. Go to original source...
  26. Preston, J., Wheeler, J., Heazlewood, J., Li, S.F., Parish, R.W.: AtMYB32 is required for normal pollen development in Arabidopsis thaliana. - Plant J. 40: 979-995, 2004. Go to original source...
  27. Quattrocchio, F., Wing, J.F., Leppen, H., Mol, J., Koes, R.E.: Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. - Plant Cell 5: 1497-1512, 1993. Go to original source...
  28. Reddy, M.K., Alexander-Lindo, R.L., Nair, M.G.: Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. - J. agr. Food Chem. 53: 9268-9273, 2005. Go to original source...
  29. Reif, H.J., Niesbach, U., Deumling, B., Saedler, H.: Cloning and analysis of two genes for chalcone synthase from Petunia hybrida. - Mol. gen. Genet. 199: 208-215, 1985. Go to original source...
  30. Sadilova, E., Stintzing, F.C., Carle, R.: Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. - Z. Naturforsch. C 61: 527-535, 2006. Go to original source...
  31. Spelt, C., Quattrocchio, F., Mol, J.N., Koes, R.: Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. - Plant Cell 12: 1619-1632, 2000. Go to original source...
  32. Stommel, J.R., Lightbourn, G.J., Winkel, B.S., Griesbach, R.J.: Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. - J. amer. Soc. hort. Sci. 134: 244-251, 2009. Go to original source...
  33. Wu, X., Prior, R.L.: Identification and characterization of anthocyanins by high-performance liquid chromatographyelectrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts and grains. - J. agr. Food Chem. 53: 3101-3113, 1998.
  34. Zhang, Q., Su, L.-J., Chen, J.-W., Zeng, X.-Q., Sun, B.-Y., Peng, C.-L.: The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. - Biol. Plant. 56: 97-104, 2012. Go to original source...