Biologia plantarum 58:64-70, 2014 | DOI: 10.1007/s10535-013-0351-z

Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat

M. S. Saleh1, A. A. Al-Doss2, A. A. Elshafei2, K. A. Moustafa2, F. H. Al-Qurainy1, M. N. Barakat2,3,*
1 Botany and Microbiology Department, College of Pure Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
2 Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Riyadh, Saudi Arabia
3 Crop Science Department, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt

In order to identify target region amplification polymorphism (TRAP) markers linked to three physiological traits in wheat (Triticum aestivum L.), the segregating F4 population from the cross between drought-sensitive (Yecora Rojo) and drought-tolerant (Pavon 76) genotypes was made. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments [2.5 and 7.5 m3(H2O) m-2(soil)]. Using 40 different TRAP primer combinations tested for polymorphism in parental and F4 family genotypes, the results revealed that quantitative trait locus (QTL) for chlorophyll content was associated with TRAP 5, TRAP 14, and TRAP 20 and explained 18, 16, and 23 % phenotypic variation, respectively. The genetic distance between chlorophyll content QTL and TRAP 5, TRAP 14, and TRAP 20 were 12.3, 19.8, and 13.6 cM, respectively. QTL for flag leaf senescence was associated with TRAP 2, TRAP 3, TRAP 15, and TRAP 16 and explained 33, 27, 28, and 23 % phenotypic variations, respectively. The genetic distance between flag leaf senescence QTL and TRAP 2, TRAP 3, TRAP 15, and TRAP 16 were 9.4, 14.7, 18.1, and 17.3 cM, respectively. QTL for cell membrane stability was associated with TRAP 8, TRAP 9, and TRAP 37 and explained 27, 30, and 24 % phenotypic variation, respectively. The markers TRAP 8, TRAP 9, and TRAP 37 had genetic distances of 17.0, 10.0, and 9.0 cM, respectively. Therefore, these TRAP markers can be used in breeding for drought tolerance in wheat.

Keywords: drought tolerance; genetic distance; QTL; target region amplification polymorphism; Triticum aestivum
Subjects: TRAP markers; chlorophyll content; leaf senescence; cell membrane stability; water stress; drought tolerance; genetic distance; QTL; wheat
Species: Triticum aestivum

Received: January 27, 2013; Revised: April 6, 2013; Accepted: April 8, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Saleh, M.S., Al-Doss, A.A., Elshafei, A.A., Moustafa, K.A., Al-Qurainy, F.H., & Barakat, M.N. (2014). Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biologia plantarum58(1), 64-70. doi: 10.1007/s10535-013-0351-z.
Download citation

References

  1. Al-Doss, A.A., Saleh, M., Moustafa, K.A., Elshafei, A.A., Barakat, M.N.: Comparative analysis of diversity based on morpho-agronomic traits and molecular markers in durum wheat under heat stress. - Afr. J. Biotechnol. 10: 3671-3681, 2011.
  2. Altinkut, A., Gozukirmizi, N.: Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. - Mol. Biotechnol. 23: 97-106, 2003. Go to original source...
  3. Baenziger, M., Edmeades, G.O., Lafitte, H.R.: Selection for drought tolerance increases maize yields across a range of nitrogen levels. - Crop Sci. 39: 1035-1040, 1999. Go to original source...
  4. Barakat, M.N., Al-Doss, A.A., Elshafei, A.A., Moustafa, K.A.: Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. - Aust. J. Crop Sci. 5: 104-111, 2011.
  5. Barakat, M.N., Al-Doss, A.A., Moustafa, K.A., Ahmed, E.I., Elshafei, A.A.: Morphological and molecular characterization of Saudi wheat genotypes under drought stress. - J. Food Agr. Environ. 8: 220-228, 2010.
  6. Barakat, M.N., Wahba, L.E., Milad, S.I.: Molecular mapping of QTLs for flag leaf senescence under water stressed conditions in wheat (Triticum aestivum L). - Biol. Plant. 57: 79-84, 2013. Go to original source...
  7. Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., Ceccarelli, S.: QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross 'Arta' 9 H. spontaneum 41-1. - Theor. appl. Genet. 107: 1215-1225, 2003. Go to original source...
  8. Benbella, M., Paulsen, G.M.: Efficacy of treatments for delaying senescence of wheat leaves: II. Senescenece and grain yield under field conditions. - Agron. J. 90: 332-338, 1998. Go to original source...
  9. Blum, A., Ebercon, A.: Cell membrane stability as a measure of drought and heat tolerance in wheat. - Crop Sci. 21: 43-47, 1981. Go to original source...
  10. Cao, W.D., Jia, J.Z., Jin, J.Y.: Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. - Plant Nutr. Fertiliz. Sci. 10: 473-478, 2004.
  11. Clark, A.J., Landolt, W., Bucher, J.B., Strasser, R.J.: Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll fluorescence performance index. - Environ. Pollut. 109: 501-507, 2000. Go to original source...
  12. Courtois, B., McLaren, G., Sinha, P.K., Prasad, K., Yadav, R., Shen, L.: Mapping QTL associated with drought avoidance in upland rice. - Mol. Breed. 6: 55-66, 2000.
  13. Dubcovsky, J., Luo, M.C., Dvorák, J.: Linkage relationships among stress-induced genes in wheat. - Theor. appl. Genet. 91: 795-801, 1995. Go to original source...
  14. Dwyer, L.M., Tollenaar, M., Houwing, L.: A nondestructive method to monitor leaf greenness in corn. - Can. J. Plant Sci. 71: 505-509, 1991. Go to original source...
  15. Fokar, M., Blum, A., Nguyen, H.T.: Heat tolerance in spring wheat. II. Grain filling. - Euphytica 104: 9-15, 1998. Go to original source...
  16. Golabadi, M., Arzani, A., Tabatabaei, B.E.S., Maibody, S.M., Mohammadi, S.A.: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. - Euphytica 177: 207-221, 2011. Go to original source...
  17. Guo, P., Li, M.: Studies on photosynthetic characteristics in rice hybrid progenies and their parents. I. Chlorophyll content, chlorophyll-protein complex and chlorophyll fluorescence kinetics. - J. trop. subtrop. Bot. 4: 60-65, 1996.
  18. Guo, J.F., Su, G.Q., Zhang, J.P., Wang, G.Y.: Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. - Afr. J. Biotechnol. 7: 1829-1838, 2008.
  19. Hafsi, M., Mechmeche, W., Bouamama, L., Djekoune, A., Zaharieva, M., Monneveux, P.: Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. - J. Agron. Crop Sci. 185: 275-280, 2000. Go to original source...
  20. Hu, J., Vick, B.A.: Target region amplification polymorphism: a novel marker technique for plant genotyping. - Plant mol. Biol. Rep. 21: 289-294, 2003. Go to original source...
  21. Jarvis, M.C., Forsyth, W., Duncan, H.J.: A survey of the pectic content of nonlignified monocot cell walls. - Plant Physiol. 88: 309-314, 1988. Go to original source...
  22. Krause, G.H., Weiss, E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  23. Lawson, W.R., Henry, R.J., Kochman, J.K., Kong, G.A.: Genetic diversity in sunflower (Helianthus annus L.) as revealed by random amplified polymorphic DNA analysis. - Aust. J. agr. Res. 45: 1319-1327, 1994. Go to original source...
  24. Leopold, A.C., Willing, R.P.: Evidence of toxicity effects of salt on membranes. - In: Staples, R.C., Toenniessen, G.H. (ed.): Plant Improvement for Irrigated Crop Production under Increasing Saline Conditions. Pp. 678-685. John Wiley and Sons, New York 1983.
  25. Levitt, J.: Responses of Plants to Environmental Stresses. Vol 2. - Academic Press, New York 1980.
  26. Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Li, L.Z., Chen, H.M., Fan, Y.D., Sun, H.Y., Zhao, X.H., Lei, T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H.: A intervarietal genetic map and QTL analysis for yield traits in wheat. - Mol. Breed. 20: 167-178, 2007. Go to original source...
  27. Liu, Z.H., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B., Faris, J.D.: A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. - Theor. appl. Genet. 111: 782-794, 2005. Go to original source...
  28. MacRae, E.A., Hardacre, A.K., Ferguson, I.B.: Comparison of chlorophyll fluorescence with several other techniques used to assess chilling sensitivity in plants. - Physiol. Plant 67: 659-665, 1986. Go to original source...
  29. McWilliam, J.R.: The dimensions of drought. - In: Baker, F.W.G. (ed.): Drought Resistance in Cereals. Pp. 1-11. CAB International, Wallingford 1989.
  30. Meer, J., Robert, H.C., Kenneth, F.M.: Map manager version 0.22. http://manager.roswellpark.org/mmQTX.html, 2002.
  31. Michelmore, R.W., Paran, I., Kesseli, R.V.: Identification of markers linked to disease-resistance genes by bulked segregant anaylsis: a rapid method to detect markers in specific genomics regions by using segregating populations. - Proc. nat. Acad. Sci. USA 88: 9828-9852, 1991. Go to original source...
  32. Milad, S.I., Wahba, L.E., Barakat, M.N.: Identification of RAPD and ISSR markers associated with flag leaf senescence under water-stressed conditions in wheat (Triticum aestivum L). - Aust. J. Crop Sci. 5: 334-340, 2011.
  33. Nelson, J.C.: QGENE: software for marker-based genomic analysis and breeding. - Mol. Breed. 3: 239-245, 1997. Go to original source...
  34. Peng, S., Garcia, F.V., Laza, R.C., Cassman, K.G.: Adjust for specific leaf weight improves chlorophyll meter's estimates of rice leaf nitrogen concentration. - Agron. J. 85: 987-990, 1993. Go to original source...
  35. Percival, G.C., Sheriffs, C.N.: Identification of drought tolerance woody perennials using chlorophyll fluorescence. - J. Arboricult. 28: 215-223, 2002.
  36. Quarrie, S.A., Dodig, D., Pekiç, S., Kirby, J., Kobiljski, B.: Prospects for marker-assisted selection of improved drought responses in wheat. - Bulg. J. Plant Physiol. 2003 Special Issue: 83-95, 2003.
  37. Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A.: Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. - Aust. J. Plant Physiol. 21: 717-730, 1994. Go to original source...
  38. Ribaut, J.M., Jiang, C., Gonzales-de-Leon, D.L., Edmeades, G.O., Hoisington, D.A.: Identification of QTL under drought situation in tropical maize. 2. Yield components and marker-assisted selection strategies. - Theor. appl. Genet. 94: 887-896, 1997. Go to original source...
  39. Rosenow, D.T., Clark, L.E.: Drought tolerance in sorghum. - In: Loden, H.D., Wilkinson, D. (ed.): Proceedings of the 36th Annual Corn and Sorghum Industry Research Conference. Pp. 18-31. CSIRO Publishing, Chicago 1981.
  40. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. - Proc. nat. Acad. Sci. USA 81: 8014-8018, 1984. Go to original source...
  41. Shen, L., Courtois, B., McNally, K.L., Robin, S., Li, Z.: Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. - Theor. appl. Genet. 103: 75-83, 2001.
  42. Sutter, E., Langhans, R.W.: Formation of epicuticular wax and its effect on water loss in cabbage plants regenerated from shoot-tip culture. - Can. J. Bot. 60: 2896-2902, 1982. Go to original source...
  43. Takeda, S., Matsuoka, M.: Genetic approaches to crop improvement: responding to environmental and population changes. - Nat. Rev. Genet. 9: 444-457, 2008. Go to original source...
  44. Tal, M., Shannon, M.C.: Effects of dehydration and high temperature on the stability of leaf membranes of Lycopersicon esculentum, L. peruvianum and Solanum pennellii. - Z. Pflanzenphysiol. 112: 411-416, 1983. Go to original source...
  45. Tester, M., Langridge, P.: Breeding technologies to increase crop production in a changing world. - Science 327: 818-822, 2010. Go to original source...
  46. Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. - Trends Plant Sci. 11: 405-412, 2007.
  47. Verma, V., Foulkes, M.J., Caligari, P., Bradley, S.R., Snape, J.: Mapping QTLs for flag leaf senescence as a yield determinant in winter wheat under optimal and droughted environments. - Euphytica 135: 255-263, 2004. Go to original source...
  48. Visser, B.: Technical aspects of drought tolerance. - Biotechnol. Dev. Monitor. 18: 5, 1994.
  49. Xu, S.S., Hu, J., Faris, J.D.: Molecular characterization of Langdon durum wheat Triticum dicoccoides chromosome substitution lines using TRAP (target region amplification polymorphism) markers. - In: Pogna, N.E., Romano, E.A., Pogna, E.A., Galterio, G. (ed): Proceedings of the 10th International Wheat Genetic Symposium. Vol. 1. Pp. 91-94. Istitute Sperimentale per la Cerealicoltura, Rome 2003.
  50. Yang, D.L., Jing, R.L., Chang, X.P., Li, W.: Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). - J. Integr. Plant Biol. 49: 646-654, 2007. Go to original source...
  51. Zeng, Z.B.: Precision mapping of quantitative trait loci. - Genet. 136: 1457-1468, 1994.