Biologia plantarum 57:262-266, 2013 | DOI: 10.1007/s10535-012-0287-8

Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis

T. Liu1,2,3, Y. Li1,2,3, J. Ren1,2,3, C. Zhang3, M. Kong1,2,3, X. Song1,2,3, J. Zhou1,2,3, X. Hou1,2,3,*
1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R. China
2 Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, P.R. China
3 College of Horticulture, Nanjing Agricultural University, Nanjing, P.R. China

A gene (named BcFLC1) homologous to the AtFLC gene, which encodes a floral repressor, was isolated from the nonheading Chinese cabbage (Brassica campestris L. ssp. chinensis) cv. NJ074. The gene showed high similarity to AtFLC. For studying the gene function, we designed to introduce the BcFLC1 gene into Arabidopsis thaliana. The results showed that BcFLC1 had effects on flowering time similar to AtFLC. We also found that Arabidopsis cold-tolerance was enhanced by BcFLC1 overexpression. Under low temperature stress, the BcFLC1 transgenic plants exhibited stronger growth than wild-type plants. The elevated cold tolerance of the BcFLC1 over-expressing plants was also confirmed by the changes of electrolyte leakage and malonyldialdehyde and proline content.

Keywords: Brassica campestris; electrolyte leakage; flowering; low temperature; malondialdehyde; proline
Subjects: gene expression; Chinese cabbage; stress tolerance; temperature low; electrolyte leakage; flowering; malondialdehyde; proline; transgenic plants; RT-PCR
Species: Arabidopsis thaliana; Brassica campestris

Received: October 4, 2011; Accepted: August 6, 2012; Published: June 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, T., Li, Y., Ren, J., Zhang, C., Kong, M., Song, X., Zhou, J., & Hou, X. (2013). Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis. Biologia plantarum57(2), 262-266. doi: 10.1007/s10535-012-0287-8.
Download citation

References

  1. Alferez, F., Pozo, L., Burns, J.K.: Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. - Plant Physiol. 127: 66-73, 2006. Go to original source...
  2. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  3. Belintani, N.G., Guerzoni, J.T.S., Moreira, R.M.P., Vieira, L.G.E.: Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. - Biol. Plant. 56: 71-77, 2012. Go to original source...
  4. Chen, M.Q., Wei, H.B., Cao, J.W., Liu, R.J., Wang, Y.L., Zheng, C.Y.: Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. - J. Biochem. mol. Biol. 40: 396-403, 2007. Go to original source...
  5. Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. - Plant mol. Biol. 54: 767-781, 2004. Go to original source...
  6. Gupta, N., Rathore, M., Goyary, D., Khare, N., Anandhan, S., Pande, V., Ahmed, Z.: Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance. - Biol. Plant. 56: 57-63, 2012. Go to original source...
  7. Havaux, M., Lutz, C., Grimm, B.: Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. - Plant Physiol. 132: 300-310, 2003. Go to original source...
  8. He, Y., Amasino, R.M.: Role of chromatin modification in flowering-time control. - Trends Plant Sci. 10: 30-35, 2005. Go to original source...
  9. Helliwell, C.A., Wood, C.C., Robertson, M., Peacock, J.W., Dennis, E.S.: The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high molecular weight protein complex. - Plant J. 46: 183-192, 2006. Go to original source...
  10. Kim, S.Y., Park, B.S., Kwon, S.J., Kim, J., Lim, M.H., Park, Y.D., Kim, D.Y., Suh, S.C., Jin, Y.M., Ahn, J.H., Lee, Y.H.: Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). - Plant Cell Rep. 26: 327-336, 2007. Go to original source...
  11. Lafuente, M.T., Belver, A., Guye, M.G., Saltveit, M.E.: Effect of temperature conditioning on chilling injury of cucumber cotyledons. Possible role of abscisic acid and heat shock proteins. - Plant Physiol. 95: 443-449, 1991. Go to original source...
  12. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., Lee, I.: The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. - Genes Dev. 14: 2366-2376, 2000. Go to original source...
  13. Michaels, S.D., Amasino, R.M.: FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. - Plant Cell 11: 949-956, 1999. Go to original source...
  14. Monk, L.S., Fagerstedt, K.V., Crawford, R.M.M.: Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. - Plant Physiol. 76: 456-459, 1989. Go to original source...
  15. Movahedi, S., Sayed Tabatabaei, B.E., Alizade, H., Ghobadi, C., Yamchi A., Khaksar G.: Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. - Biol. Plant. 56: 37-42, 2012. Go to original source...
  16. Onouchi, H., Igeño, M.I., Périlleux, C., Graves, K., Coupland, G.: Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. - Plant Cell 12: 885-900, 2000. Go to original source...
  17. Rieu, I., Powers, S.J.: Real-time quantitative RT-PCR: design, calculations, and statistics. - Plant Cell. 21: 1031-1033, 2009. Go to original source...
  18. Rong, Z.L., Hou, X.L., Shi, G.J., Xiao, D., Hao, H.N.: [Cloning and expression analysis of late bolting BcFLC1 gene from Brassica campestris ssp. chinensis.] - J. Nanjing agr. Univ. 33(6): 23-27, 2010. [In Chinese]
  19. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., Coupland, G.: The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. - Genes Dev. 20: 898-912, 2006. Go to original source...
  20. Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., Lee, I.: Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. - Plant Cell 21: 3185-3197, 2009. Go to original source...
  21. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., Dennis, E.S.: The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. - Plant Cell 11: 445-458, 1999. Go to original source...
  22. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S.: The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). - Proc. nat. Acad. Sci. USA. 97: 3753-3758, 2000. Go to original source...
  23. Smirnoff, N.: Antioxidant systems and plant response to the environment. - In: Smirnof, N. (ed.): Environment and Plant Metabolism: Flexibility and Acclimation. Pp. 217-243. Bios Scientific Publishers, Oxford 1995.
  24. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571-599, 1999. Go to original source...