Biologia plantarum 51:754-758, 2007 | DOI: 10.1007/s10535-007-0154-1
Antioxidant defense system in Phragmites communis Trin. ecotypes
- 1 College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, P.R. China
- 2 College of Life Sciences, Lanzhou University, Lanzhou, P.R. China
The antioxidant defense system in three ecotypes of reed (Phragmites communis Trin.), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), from northwest China were investigated. The HSMR possessed the highest ratio of ascorbate (ASC)/dehydroascorbate (DHA) and activities of superoxide dismutase (SOD) and catalase among the three reed ecotypes, whereas, the DR exhibited the highest ratio of glutathione/glutathione disulfide and activities of ASC peroxidase (APX) and DHA reductase. Malondialdehyde and hydrogen peroxide contents were highest in HSMR, intermediate in SR, and lowest in DR. In addition, different isoenzymes of glutathion reductase, APX, SOD and DHA were also observed in three reed ecotypes.
Keywords: antioxidative enzymes; ascorbate; drought-prone and saline habitats; glutathione; reed
Subjects: antioxidants, antioxidant enzymes; ascorbate peroxidase; catalase; dehydroascorbate reductase; glutamic acid, glutathione; glutathione reductase; malondialdehyde; peroxidase; Phragmites communis; reed
Received: May 5, 2005; Accepted: July 25, 2006; Published: December 1, 2007Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Arbona, V., Flors, V., Jacas, J., Garcia-Agustin, P., Gomez-Cadenas, A.: Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity.-Plant Cell Physiol. 44: 388-394, 2003.
Go to original source...
- Asada, K.: Chloroplasts: formation of active oxygen and its scavenging.-Methods Enzymol. 105: 422-429, 1984.
Go to original source...
- Balestrasse, K.B., Gardey, L., Gallego, S.M., Tomaro, M.L.: Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress.-Aust. J. Plant Physiol. 28: 497-504, 2001.
- Biemelt, S., Keetman, V., Albrecht, G.: Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings.-Plant Physiol. 116: 651-658, 1998.
Go to original source...
- Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.
Go to original source...
- Cakmak, I., Strboe, D., Marschner, H.: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds.-J. exp. Bot. 44: 127-132, 1993.
Go to original source...
- Chaparzadeh, N., D'Amico, M.L., Khavari-Nejad, R.A., Izzo, R., Navari-Izzo, F.: Antioxidative responses of Calendula officinalis under salinity conditions.-Plant Physiol. Biochem. 42: 695-701, 2004.
Go to original source...
- Chen, K.M., Gong, H.J., Chen, G.C., Wang, S.M., Zhang, C.L.: Gradual drought under field condition influences the glutathione metabolism, redox balance and energy supply in spring wheat.-J. Plant Growth Regul. 23: 20-28, 2004b.
Go to original source...
- Chen, K.M., Gong, H.J., Chen, G.C., Wang, S.M., Zhang, C.L.: Up-regulation of glutathione metabolism and changes of redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats.-J. Plant Physiol. 160: 293-301, 2003.
Go to original source...
- Chen, K.M., Gong, H.J., Wang, S.M., Zhang, C.L.: The regulation of the plasma membrane redox system and H+-transport in adaptation of reed ecotypes to their habitats.-Biol. Plant. 48: 87-92, 2004a.
Go to original source...
- Cheng, Y.F., Pu, T.L., Xue, Y.B., Zhang, C.L.: PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communis Trin.).-Chinese Sci. Bull. 46: 1-5, 2001.
Go to original source...
- Cnubben, N.H.P., Rietjens, I.M.C.M., Wortelboer, H., Van Zanden, J., Van Bladeren, P.J.: The interplay of glutathione-related processes in antioxidant defense.-Environ. Toxicol. Pharmacol. 10: 141-152, 2001.
Go to original source...
- Davey, M.W., Van Montagu, M., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J.J., Strain, J.J., Favell, D., Fletcher, J.: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing.-J. Sci. Food Agr. 80: 825-860, 2000.
Go to original source...
- Dhindsa, R.S., Dhindsa, P.P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93-101, 1980.
Go to original source...
- Foyer, C.H., Descourvières, P., Kunert, K.J.: Protection against oxygen radicals: an important defence mechanism studied in transgenic plants.-Plant Cell Environ. 17: 507-523, 1994.
Go to original source...
- Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilations, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.-Plant Physiol. 116: 571-580, 1998.
Go to original source...
- González, A., Steffen, K.L., Lynch, J.P.: Light and excess manganese: Implications for oxidative stress in common bean.-Plant Physiol. 118: 493-504, 1998.
Go to original source...
- Horemans, N., Foyer, C.H., Potters, G., Asard, H.: Ascorbate function and associated transport systems in plants.-Plant Physiol. Biochem. 38: 531-540, 2000.
Go to original source...
- Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., Becana, M.: Oxidative damage in pea plants exposed to water deficit or paraquat.-Plant Plysiol. 116: 173-181, 1998.
Go to original source...
- Jain, M., Nandwal, A.S., Kundu, B.S., Kumar, B., Sheoran, I.S., Kumar, N., Mann, A., Kukreja, S.: Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeon pea roots as affected by soil moisture.-Biol. Plant. 50: 303-306, 2006.
Go to original source...
- Kim, S.Y., Lim, J.H., Park, M.R., Kim, Y.J., Park, T.I., Seo, Y.W., Choi, K.G., Yun, S.J.: Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barlay roots under saline stress.-J. Biochem. mol. Biol. 38: 218-224, 2005.
- Kwon, S.-I., Anderson, A.J.: Differential production of superoxide dismutase and catalase isozymes during infection of wheat by a Fusarium proliferatum-like fungal isolate.-Physiol. mol. Plant Pathol. 58: 73-81, 2001.
Go to original source...
- Li, L., Van Staden, J.: Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress.-Plant Growth Regul. 24: 55-66, 1998.
Go to original source...
- May, M.J., Vernoux, T., Leaver, C., Montagu, M.V., Inzé, D.: Glutathione homeostasis in plants: implications for environmental sensing and plant development.-J. exp. Bot. 49: 649-667, 1998.
Go to original source...
- Mittova, V., Guy, M., Tal, M., Volokita, M.: Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii.-J. exp. Bot. 55: 1105-1113, 2004.
Go to original source...
- Nagalakshmi, N., Prasad, M.N.V.: Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus.-Plant Sci. 160: 291-299, 2001.
Go to original source...
- Noctor, G., Arisi, A-C.M., Jouanin, L., Kunert, K-J., Rennenberg, H., Foyer, C.H.: Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants.-J. exp. Bot. 49: 623-647, 1998.
Go to original source...
- Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249-279, 1998.
Go to original source...
- Paciolla, C., De Tullio, M.C., Chiappetta, A., Innocenti, A.M., Bitonti, M.B., Liso, R., Arrigoni, O.: Short-and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots.-Plant Cell Physiol. 42: 857-863, 2001.
Go to original source...
- Pastori, G.M., Foyer, C.H.: Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls.-Plant Physiol. 129: 460-468, 2002.
Go to original source...
- Patterson, B.D., Macrac, E.A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium(IV).-Anal. Biochem. 139: 487-492, 1984.
Go to original source...
- Polle, A.: Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modelling. Computer simulations as a step towards flux analysis.-Plant Physiol. 126: 445-462, 2001.
Go to original source...
- Reddy, A.R., Chaitanya, K.V., Vivekanandan, M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.-J. Plant Physiol. 161: 1189-1202, 2004.
Go to original source...
- Sairam, P.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress.-Plant Sci. 162: 897-904, 2002.
Go to original source...
- Sen, C.K.: Glutathione homeostasis in response to exercise training and nutritional supplements.-Mol. cell. Biochem. 196: 31-42, 1999.
Go to original source...
- Smirnoff, N.: The function and metabolism of ascorbic acid in plants.-Ann. Bot. 78: 661-669, 1996.
Go to original source...
- Sudhalar, C., Lakshmi, A., Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity.-Plant Sci. 161: 613-619, 2001.
Go to original source...
- Synková, H., Valcke, R.: Response to mild water stress in transgenic Pssu-ipt tobacco.-Physiol. Plant. 112: 513-523, 2001.
Go to original source...
- Tommasi, F., Paciolla, C., De Pinto, M.C., De Gara, L.: A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.-J. exp. Bot. 52: 1647-1654, 2001.
Go to original source...
- Wang, H.L., Hao, L.M., Wen, J.Q., Zhang, C.L., Liang H.G.: Differential expression of photosynthesis-related genes of reed ecotypes in response to drought and saline habitats.-Photosynthetica 35: 61-69, 1998.
Go to original source...
- Ye, B., Gitler, C., Gressel, J.: A high-sensitivity, single-gel, polyacrylamide gel electrophoresis method for the quantitative determination of glutathione reductases.-Anal. Biochem. 246: 159-165, 1997.
Go to original source...
- Zheng, W.J., Zheng, X.P., Zhang, C.L.: A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in northwest China: leaf anatomy, ultrastructure, and activities of ribulose 1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase.-Physiol. Plant. 110: 201-208, 2000.
Go to original source...
- Zhu, X.Y., Chen, G.C., Zhang, C.L.: Photosynthetic electron transport, photophosphorylation, and antioxidants in two ecotypes of reed (Phragmites communis Trin.) from different habitats.-Photosynthetica 39: 183-189, 2001.
Go to original source...
- Zlatev, Z.S., Lidon, F.C., Ramalho, J.C., Yordanov, I.T.: Comparison of resistance to drought of three bean cultivars.-Biol. Plant. 50: 389-394, 2006.
Go to original source...