Biologia plantarum 58:80-88, 2014 | DOI: 10.1007/s10535-013-0365-6

Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera

A. Llanes1, O. Masciarelli1, R. Ordóñez2, M. I. Isla2, V. Luna1,*
1 Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
2 Laboratorio de Bioquímica Vegetal, Instituto de Química del Noroeste Argentino, Universidad Nacional de Tucumán, Tucumán, Argentina

In this work, the response of the halophytic shrub Prosopis strombulifera to lowering an osmotic potential (Ψo) to -1.0, -1.9, and -2.6 MPa generated by NaCl, Na2SO4, and the iso-osmotic combination of them was studied at 6, 12, and 24 h after reaching such values in the growing media. By analyzing the content of abscisic acid (ABA) and related metabolites and transpiration rates, we observed that ABA content varied depending on type of salt, salt concentration, organ analyzed, and age of a plant. ABA content in leaves was much higher than in roots, presumably because of rapid biosynthesis and transport from roots. Leaves of Na2SO4-treated plants had the highest ABA content at Ψo -2.6 MPa (24 h) associated with sulfate toxicity symptoms. Significant content of ABA-glucose ester (ABA-GE) was found in both the roots and leaves, whereas only low content of phaseic acid (PA) and dihydrophaseic acid (DPA). The roots showed high ABA-GE accumulation in all treatments. The highest content of free ABA was correlated with ABA-GE glucosidase activity. The results show that ABA-GE and free ABA work together to create a specific stress signal.

Keywords: abscisic acid glucose ester; dihydrophaseic acid; halophyte; NaCl; Na2SO4; osmotic potential; phaseic acid; salinity
Subjects: salinity; abscsic acid; abscisic acid glucose ester; phaseic acid; osmotic potential; halophytes; transpiration rate
Species: Prosopis strombulifera

Received: December 19, 2012; Revised: May 10, 2013; Accepted: May 14, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Llanes, A., Masciarelli, O., Ordóñez, R., Isla, M.I., & Luna, V. (2014). Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera. Biologia plantarum58(1), 80-88. doi: 10.1007/s10535-013-0365-6.
Download citation

References

  1. Burguess, J.: An improved photometer. - School Sci. Rev. 64: 699-701, 1983. Go to original source...
  2. Burkart, A.: A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Catalogue of the reconized species of Prosopis. - J. Arnold Arbor. 57: 450-525, 1976.
  3. Cantero, J., Cantero, A., Cisneros, J. (ed.): Vegetation of Hydro-Halomorphic landscapes from central Argentina. - Fundación Universidad Nacional de Río Cuarto, Córdoba 1996.
  4. Catalán, L., Balzarini, M., Taleisnik, E., Sereno, R., Karlin, U.: Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). - Forest Ecol. Manage. 63: 347-357, 1994. Go to original source...
  5. Cutler, S., Rodriguez, P., Finkelstein, R., Abrams, S.: Abscisic acid: emergence of a core signaling network. - Annu. Rev. Plant Biol. 61: 651-679, 2010. Go to original source...
  6. De Torres-Zabala, M., Truman, W., Bennett, M., Lafforgue, G., Mansfield, J., Rodriguez Egea, P., Bogre, L., Grant, M.: Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26: 1434-1443, 2007. Go to original source...
  7. Earns, L., Goodger, J., Alvarez, S., Marsh, E., Berla, B., Lockhart, E., Jung, J., Li, P., Bohnert, H., Schachtman, D.: Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. - J. exp. Bot. 61: 3395-3405, 2012.
  8. Felker, P.: Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. - In: De la Barrera, E., Smith, W. (ed.): Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park Nobel. Pp. 1-41.
  9. Mildred E. Mathias Botanical Garden, University of California, Los Angeles 2007.
  10. Flowers, T., Colmer, T.: Salinity tolerance in halophytes. - New Phytol. 179: 945-963, 2008. Go to original source...
  11. Hasegawa, P., Bressan, R., Zhu, J., Bohnert, H.: Plant cellular and molecular response to high salinity. - Plant mol. Biol. 51: 463-499, 2000.
  12. Ikegami, K., Okamoto, M., Seo, M., Koshiba, T.: Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. - J. Plant Res. 122: 235-243, 2009. Go to original source...
  13. Jenkins, S., Edward, G., Lennard, B., Rengel, Z.: Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliate) and wheat grass (Thinopyrum ponticum) zonation on salt land with a shallow-water table, plant growth and Na+ and K+ concentrations in the leaves. - Plant Soil 329: 91-104, 2012. Go to original source...
  14. Kato-Noguchi, H., Tanaka, Y.: Effect of ABA-b-Dglucopyranosyl ester and activity of ABA-D-glucosidase in Arabidopsis thaliana. - J Plant Physiol. 165: 788-790, 2008. Go to original source...
  15. Kholová, J., Hash, C., Kakkera, A., Kočová, M., Vadez, V.: Constitutive water conserving mechanisms is correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. - J. exp. Bot. 61: 369-377, 2010. Go to original source...
  16. Lee, K., Piao, H., Kim, H., Choi, S., Jiang, F., Hartung, W., Hwang, I., Kwak, J., Lee, I., Hwang, I.: Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. - Cell 126: 1109-1120, 2006. Go to original source...
  17. Lim, E., Doucet, C., Hou, B., Jackson, R., Abrams, S., Bowles, D.: Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. - Tetrahedron Asymmetry 16: 143-147, 2005. Go to original source...
  18. Llanes, A., Reginato, M., Palacio, G., Luna, V.: Biochemical indicators of salinity tolerance in the halophyte Prosopis strombulifera are differentially affected by NaCl and Na2SO4. - In: Öztürk, M., Mermut, A., Celik, A. (ed.): Urbanisation, Land Use, Land Degradation and Environment. Pp. 81-91. Birkhäuser Verlag, Basel - Boston - Berlin 2012.
  19. Lovelock, C., Ball, M.: Influence of salinity on photosynthesis of halophytes. - In: Läuchli, A., Lüttge, U. (ed.): Salinity: Environment-Plants-Molecules. Pp. 315-339. Kluwer Academic Publishers, Dordrecht 2002. Go to original source...
  20. Luna, V., Soriano, M., Bottini, R., Sheng, C., Pharis, R.: Levels of endogenous gibberellins, abscisic acid, indol 3 acetic acid and naringenin during dormancy of peach flower buds. - Acta Hort. 329: 265-267, 1993. Go to original source...
  21. Manivannan, P., Jaleel, C., Somasundaram, R., Panneerselvam, R.: Osmoregulation and antioxidant metabolism in drought stressed Helianthus annuus under triadimefon drenching. - Comp. Rend. Biol. 331: 418-425, 2008. Go to original source...
  22. Mantri, N., Ford, R., Coram, T., Pang, E.: Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. - BMC Genom. 8: 303, 2007. Go to original source...
  23. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  24. Nambara, E., Marion-Poll, A.: Abscisic acid biosynthesis and catabolism. - Annu. Rev. Plant Biol. 56: 165-185, 2005. Go to original source...
  25. Oritani, T., Kyoto, H.: Biosynthesis and metabolism of abscisic acid and related compounds. - Natur. Prod. Rep. 20: 414-425, 2003. Go to original source...
  26. Priest, D., Ambrose, S., Vaistij, F., Elias, L., Higgins, G., Ross, A., Abrams, S., Bowles, D.: Use of the glucosyl transferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. - Plant J. 46: 492-502, 2006. Go to original source...
  27. Reginato, M.: Responses of Prosopis strombulifera halophytic plant to different salt mediums. Modification of morphophysiological parameters and hormonal regulation. - PhD Thesis. Department of Plant Physiology, University of Río Cuarto, Córdoba 2009.
  28. Reginato, M., Sgroy, V., Llanes, A., Cassán, F., Luna, V.: The american halophyte Prosopis strombulifera, a new potential tool to confer salt tolerance to crops. - In: Ashraf, M., Öztürk, M. (ed.): Crop Production for Agricultural Improvement. Pp 115-144. Springer. New York 2012. Go to original source...
  29. Reinoso, H., Sosa, L., Ramírez, L., Luna, V.: Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). - Can. J. Bot. 82: 618-628, 2004. Go to original source...
  30. Reinoso, H., Sosa, L., Reginato, M., Luna, V.: Histological alterations induced by sodium sulphate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. - World J. agr. Sci. 1: 109-119, 2005.
  31. Sauter, A., Dietz, K., Hartung, W.: A possible stress physiological role of abscisic acid conjugates in root-toshoot signaling. - Plant Cell Environ. 25: 223-228, 2002. Go to original source...
  32. Sauter, A., Hartung, W.: Radial transport of abscisic acid conjugates in maize roots: its implication for long distance stress signals. - J. exp. Bot. 51: 929-935, 2000. Go to original source...
  33. Schachtman, D., Goodger, J.: Chemical root to shoot signaling under drought. - Trends Plant Sci. 13: 281-287, 2008. Go to original source...
  34. Sharp, R., Davies, W.: Variability among species in the apoplastic pH signaling response to drying soils. - J. exp. Bot. 60: 4363-4370, 2009. Go to original source...
  35. Shi, D., Sheng, Y.: Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. - Environ. exp. Bot. 54: 8-21, 2005. Go to original source...
  36. Sirichandra, C., Gu, D., Hu, H., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., Kwak, J.: Phosphorylation of Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. - FEBS Lett. 583: 2982-2986, 2009. Go to original source...
  37. Sosa, L., Llanes, A., Reinoso, H., Reginato, M., Luna, V.: Osmotic and specific ion effects on the germination of Prosopis strombulifera. - Ann. Bot. 96: 261-267, 2005. Go to original source...
  38. Steel, R., Torrie, J. (ed.): Bioestadística: Principios y Procedimientos. [Biostatistics: Principles and Procedures.] - Mc Graw-Hill, Barcelona 1995. [In Span.]
  39. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. - Curr. Opin. Biotechnol. 17: 113-122, 2006. Go to original source...
  40. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. - Plant Cell Physiol. 51: 1821-1839, 2010.
  41. Verslues, P., Zhu, J.: New developments in abscisic acid perception and metabolism. - Curr. Opin. Plant Biol. 10: 447-452, 2007. Go to original source...
  42. Zhang, D., Chen, S., Peng, Y., Shen, Y.: Abscisic acid-specific binding sites in the flesh of developing apple fruit. J. exp. Bot. 52: 2097-2103, 2001. Go to original source...
  43. Zhang, J., Jia, W., Yang, J., Ismail, A.: Role of ABA in integrating plant responses to drought and salt stresses. - Field Crops Res. 97: 111-119, 2006. Go to original source...
  44. Zhou, R., Squires, T., Ambrose, S., Abrams, S., Ross, A., Cutler, A.: Rapid extraction of ABA and its metabolites for liquid chromatography-tandem mass spectrometry analysis. - J. Chromatogr. 10: 75-85, 2003. Go to original source...