Biologia plantarum 61:520-528, 2017 | DOI: 10.1007/s10535-016-0687-2

Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes

P. Lin1, C. Shen2, H. Chen2, X. H. Yao1,*, J. Lin2,*
1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
2 Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, P.R. China

Cold stress is one of the major limitations to crop productivity worldwide. We investigated the effects of multiple gene expression from cold tolerant Capsella bursa-pastoris in transgenic tobacco (Nicotiana tabaccum) plants. We combined CblCE53 and CbCBF into a reconstruct vector by isocaudomers. Plant overexpression of CbICE53 under the stress inducible CbCOR15b promoter and CbCBF under a constitutive promoter showed increased tolerance to both chilling and freezing temperatures in comparison to wild-type plants, according to the electrolyte leakage and relative water content. The expressions of endogenous cold-responsive genes in transgenic tobacco (NtDREB1, NtDREB3, NtERD10a and NtERD10b) were obviously upregulated under normal and low temperature conditions. These results suggest that the CbICE53 + CbCBF transgenic plants showed a much greater cold tolerance as well as no dwarfism and delayed flowering. Thus they can be considered as a potential candidate for transgenic engineering for cold tolerant tobacco.

Keywords: Capsella bursa-pastoris; cold inducible genes; Nicotiana tabaccum; stress inducible promoter; transgenic plants
Subjects: freezing tolerance; cold inducible genes; stress inducible promoter; transgenic plants; relative water content; electrolyte leakage; glucose; tobacco
Species: Nicotiana tabacum; Capsella bursa-pastoris

Received: June 6, 2016; Revised: July 22, 2016; Accepted: August 29, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lin, P., Shen, C., Chen, H., Yao, X.H., & Lin, J. (2017). Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes. Biologia plantarum61(3), 520-528. doi: 10.1007/s10535-016-0687-2.
Download citation

Supplementary files

Download filebpl-201703-0013_S1.pdf

File size: 167.68 kB

References

  1. Almeida, D.M., Almadanim, M.C., Lourenço, T., Abreu, I.A., Saibo, N.J., Oliveira, M.M.: Screening for abiotic stress tolerance in Rice: salt, cold, and drought. - Methods mol. Biol. 1398: 155-182, 2016. Go to original source...
  2. Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., Thomashow, M.F.: Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. - Proc. nat. Acad. Sci. USA 93: 13404-13409, 1996. Go to original source...
  3. Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P., Finn, C.E., Chen, T.H., Hurry, V.: The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. - Plant Cell Environ. 29: 1259-1272, 2006. Go to original source...
  4. Bhatnagar-Mathur, P., Rao, S., Vadez, V., Reddy, D.S., Rathore, A., Yamaguchi-Shinozaki, K., Sharma, K.K.: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. - Mol. Breed. 33: 327-340, 2014. Go to original source...
  5. Chinnusamy, V., Zhu, J., Zhu, J.K.: Cold stress regulation of gene expression in plants. - Trends Plant Sci. 12: 444-451, 2007. Go to original source...
  6. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt- and cold-responsive gene expression. - Plant J. 33: 751-763, 2003.
  7. Fowler, D.B., N'Diaye, A., Laudencia-Chingcuanco, D., Pozniak, C.J.: Quantitative trait loci associated with phonological development, low-temperature tolerance, grain quality, and agronomic characters in Wheat (Triticum aestivum L.). - PLoS ONE 11: e0152185, 2016 Go to original source...
  8. Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. - Plant mol. Biol. 54: 767-781, 2004. Go to original source...
  9. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. - Plant Physiol. 124: 1854-1865, 2000.
  10. Gutha, L.R., Reddy, A.R.: Rice DREB1B promoter shows distinct stress-specific responses and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. - Plant mol. Biol. 68: 533-555, 2008. Go to original source...
  11. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. - Plant Physiol. 130: 639-648, 2002. Go to original source...
  12. Han, T.S., Wu, Q., Hou, X.H., Li, Z.W., Zou, Y.P., Ge, S., Guo, Y.L.: Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). - Mol. Plant. 8: 427-438, 2015. Go to original source...
  13. Holmberg, N., Bulow, L.: Improving stress tolerance in plants by gene transfer. - Trends Plant Sci. 3: 61-66, 1998. Go to original source...
  14. Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. - Plant Physiol. 130: 618-626, 2002a. Go to original source...
  15. Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., Chan, M.T.: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. - Plant Physiol. 129: 1086-1094, 2002b. Go to original source...
  16. Hu, R., Zhu, X., Xiang, S., Zhan, Y., Zhu, M., Yin, H., Zhou, Q., Zhu, L., Zhang, X., Liu, Z.: Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. - Biochem. biophys. Res. Commun. 469: 535-41, 2016. Go to original source...
  17. Hughes, M.A., Dunn, M.A.: The molecular biology of plant acclimation to low temperature. - J. exp. Bot. 47: 291-305, 1996. Go to original source...
  18. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. - Plant Cell Physiol. 47: 141-153, 2006. Go to original source...
  19. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. - Science 280: 104-106, 1998. Go to original source...
  20. Jaglo-Ottosen, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydrationresponsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. - Plant Physiol. 127: 910-917, 2001. Go to original source...
  21. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. - Nat. Biotechnol. 17: 287-291, 1999. Go to original source...
  22. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1a gene and stress-inducible RD29a promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. - Plant Cell Physiol. 45: 346-350, 2004. Go to original source...
  23. Lee, S.C., Huh, K.W., An, K., An, G., Kim, S.R.: Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). - Mol. Cells 18: 107-114, 2004.
  24. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. - Plant Cell 10: 1391-1406, 1998. Go to original source...
  25. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. - Methods 25: 402-408, 2001. Go to original source...
  26. Murray, M.G., Thompson, W.F.: Rapid isolation of high molecular weight plant DNA. - Nucl. Acids Res. 8: 4321-4325, 1980. Go to original source...
  27. NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., Sarhan, F. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. - Plant Physiol. 129: 1368-1381, 2002. Go to original source...
  28. Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I.K., Kim, J.K.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. - J. Plant Biotechnol. 5: 646-656, 2007. Go to original source...
  29. Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, M., Kim, Y.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. - Plant Physiol. 138: 341-351, 2005. Go to original source...
  30. Park, J.M., Park, C.J., Lee, S.B., Ham, B., Shin, R., Paek, K.: Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. - Plant Cell 13: 1035-1046, 2001. Go to original source...
  31. Park, S., Lee, C.M., Doherty, C.J., Gilmour, S.J., Kim, Y., Thomashow, M.F.: Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. - Plant J. 82: 193-207, 2015. Go to original source...
  32. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K., Hoisington, D.: Stress induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. - Genome 47: 493-500, 2004. Go to original source...
  33. Pino, M.T., Skinner, J.S., Park, E.J., Jeknić, Z., Hayes, P.M., Thomashow, M.F., Hoisington, D.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. - Plant Biotechnol. J. 5: 591-604, 2007. Go to original source...
  34. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S.P., Shinozaki, K., Yamaguchi-Shinozaki, K.: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. - Plant J. 50: 54-69, 2007. Go to original source...
  35. Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. - Biochem. biophys. Res. Commun. 290: 998-1009, 2002. Go to original source...
  36. Sakuma, Y., Maryyama, K., Qin, F., Osakabe, Y., Shinozaki, K., Yamaguchi-Shinozaki, K.: Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. - Proc. nat. Acad. Sci. USA 103:18822-18827, 2006. Go to original source...
  37. Seki, M., Umezawa, T., Urano, K., Shinozaki, K.: Regulatory metabolic networks in drought stress responses. - Curr. Opin. Plant Biol. 10: 296-302, 2007. Go to original source...
  38. Shan, D.P., Huang, J.G., Yang, Y.T., Guo, Y.H., Wu, C.A., Yang, G.D., Gao, Z., Zheng, C.C.: Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. - New Phytol. 176: 70-81, 2007. Go to original source...
  39. Shen, C., Zhou, M.Q., Wu, L.H., Lin, J.: Construction of cold induction pathway multivalent vector in Capsella bursa-pastoris CBF and transformation of tobacco. - J. Shanghai Jiaotong Univ. 32: 33-44, 2014.
  40. Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., Chen, S.Y.: An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor-induced by cold dehydration and ABA stress. - Theor. appl. Genet. 106: 923-930, 2003. Go to original source...
  41. Shimamura, C., Ohno, R., Nakamura, C., Takumi, S.: Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. - J. Plant Physiol. 163: 213-219, 2006. Go to original source...
  42. Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C., Murray, J.: Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. - Plant Physiol. 119: 343-351, 1999. Go to original source...
  43. Sorrell, D.A., Menges, M., Healy, J.M.S., Deveaux, Y., Amano, C., Su, Y., Nakagami, H., Shinmyo, A., Doonan, J.H., Sekine, M., Murray, J.: Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. - Plant Physiol. 126: 1214-1223, 2001. Go to original source...
  44. Steponkus, P.L., Uemura, M., Webb, M.S.: Membrane destabilization during freeze-induced dehydration. - Curr. Topics Plant Physiol. 10: 37-47, 1993.
  45. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. - Proc. nat. Acad. Sci. USA 94: 1035-1040, 1997. Go to original source...
  46. Tao, P., Wang, J.: Characterization of the variable 3' UTR and expression of the two intron-containing KIN transcripts from Capsella bursa-pastoris. - Gene 507: 99-105, 2012. Go to original source...
  47. Thomashow, M.F.: Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. - Plant Physiol. 154: 571-577, 2010. Go to original source...
  48. Thomashow, M.F.: So what's new in the field of plant cold acclimation? Lots! - Plant Physiol. 125: 89-93, 2001. Go to original source...
  49. Uemura, M., Josepg, R.A., Steponkus, P.L.: Cold acclimation of Arabidopsis thaliana effect on plasma membrane lipid composition and freeze-induced lesions. - Plant Physiol. 109: 15-30, 1995. Go to original source...
  50. Uemura, M., Steponkus, P.L.: Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. - Plant Physiol. 114: 1493-1500, 1997. Go to original source...
  51. Urban, M.O., Klíma, M., Vítámvás, P., Vašek, J., Hilgert-Delgado, A.A., Kučera, V.: Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. - J. Plant Physiol. 170: 1600-1608, 2013. Go to original source...
  52. Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - Planta 218: 1-14, 2003. Go to original source...
  53. Wang, X.L., Liu, S.X., Liu, X.J., Chen, Z.H., Liu, X.F., Pang, Y.Z., Sun, X.F., Tang, K.X.: Molecular cloning and characterization of a CBF gene from Capsella bursa-pastoris. - DNA Sequence 15: 180-187, 2004. Go to original source...
  54. Wu, L.H., Zhou, M.Q., Shen, C., Liang, J., Lin, J.: Transgenic tobacco plants expressing CbCOR15b from Capsella bursa-pastoris show enhanced accumulation and tolerance to cold. - J. Plant Physiol. 169: 1408-1416., 2012.
  55. Xin, Z., Browse, J.: Cold comfort farm: the acclimation of plants to freezing temperatures. - Plant Cell Environ. 23: 893-902, 2000. Go to original source...
  56. Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. - Plant J. 33: 373-383, 2003. Go to original source...
  57. Yu, Y., Steinmetz, A., Meyer, D., Brown, S., Shen, W.H.: The tobacco A-type cyclin, Nicta; CYCA3; 2, at the nexus of cell division and differentiation. - Plant Cell 15: 2763-2777, 2003. Go to original source...
  58. Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. - Plant J. 39: 905-919, 2004. Go to original source...
  59. Zhou, M., Wu, L., Liang, J., Shen, C., Lin, J.: Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsella bursa-pastoris. - Mol. Biol. Rep. 39: 5169-5179, 2012a. Go to original source...
  60. Zhou, M.Q., Shen, C., Wu, L.H., Tang, K.X., Lin, J.: CBF-dependent signaling pathway: a key responder to low temperature stress in plants. - Crit. Rev. Biotechnol. 31: 186-192, 2011. Go to original source...
  61. Zhou, M.Q., Wu, L.H., Liang, J., Shen, C., Lin, J.: Cold-induced modulation of CbICE53 gene activates endogenous gene to enhance acclimation in transgenic tobacco. - Mol. Breed. 30: 1611-1620, 2012b. Go to original source...
  62. Zhou, M.Q., Xu, M., Wu, L.H., Shen, C., Ma, H., Lin, J.: CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. - Plant mol. Biol. 85: 259-275, 2014. Go to original source...