Biologia plantarum 2014, 58:247-255 | DOI: 10.1007/s10535-014-0393-x
Structural and expression analyses of three PmCBFs from Prunus mume
- 1 Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, P.R. China
C-repeat binding factor (CBF), also called the dehydration-responsive element binding factor 1 (DREB1), can be induced by low-temperature (LT), and plays an important role in abiotic stress tolerance in higher plants. In present study, two new homologous genes of CBF from Prunus mume (PmCBFb and PmCBFc) have been identified and characterized. The complete coding sequences of PmCBFb and PmCBFc were 714 and 723 bp, respectively. They encoded putative proteins of 237 and 240 amino acids. Neither of them had introns. Genome PCR sequencing showed that PmCBFb was arranged in tandem with PmCBFa (another CBF/DREB1 homolog in P. mume) within a region of nearly 4 kb. Promoter prediction analyses indicated that multiple types of cis-elements related to abiotic stress and irradiance existed in the putative promoter region of PmCBFb. LT treatment of seedlings showed that the expression of PmCBF genes were induced by 2 °C within 30 min, and their expression reached a peak after 8-12 h. In addition, PmCBFa and PmCBFb appeared more sensitive to LT than PmCBFc. However, the exact roles of PmCBF genes in plant cold tolerance need to be further investigated.
Keywords: dehydration-responsive element binding factor; gene expression; low temperature; Mei flower; phylogenetic tree; tandem array
Subjects: PmCBFs; dehydration-responsive element binding factor; gene expression; temperature - low; phylogenetic tree; tandem array; amino acid sequence; Japanese apricot
Species: Prunus mume
Received: May 24, 2013; Revised: October 6, 2013; Accepted: October 7, 2013; Published: June 1, 2014Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | bpl-201402-0006_S1.pdf File size: 698.78 kB |
References
- Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., Genschik, P.: The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. - Plant Cell 20: 2117-2129, 2008.
Go to original source...
- Badawi, M., Danyluk, J., Boucho, B., Houde, M., Sarhan, F.: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. - Mol. Genet. Genomics 277: 533-554, 2007.
Go to original source...
- Barros, P.M., Goncalves, N., Saibo, N.J.M., Oliveira, M.M.: Functional characterization of two almond C-repeat-binding factors involved in cold response. - Tree Physiol. 32: 1113-1128, 2012.
Go to original source...
- Doherty, C.J., Buskirk, H.A.V., Myers, S.J., Thomashow, M.F.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. - Plant Cell 21: 972-984, 2009.
Go to original source...
- Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. - Plant Cell 14: 1675-1690, 2002.
Go to original source...
- Fowler, S.G., Cook, D., Thomashow, M.F.: Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. - Plant Physiol. 137: 961-968, 2005.
Go to original source...
- Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. - Plant J. 16: 433-442, 1998.
- Guo, C., Zhang, J., Zhang, J., Bao, M.: [Cloning and sequence analysis of PmCBFa gene from Prunus mume.] - J. Beijing Forest. Univ. 34: 35-39, 2012. [In Chin.]
- Gupta, N., Rathore, M., Goyary, D., Khare, N., Anandhan, S., Pande, V., Ahmed, Z.: Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance. - Biol. Plant. 56: 57-63, 2012.
Go to original source...
- Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H., Han, B., Zhu, T., Wang, X., Kreps, J.A., Kay, S.A.: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. - Science 290: 2110-2113, 2000.
Go to original source...
- Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cisacting regulatory DNA elements (PLACE) database: 1999. - Nucl. Acids Res. 27: 297-300, 1999.
Go to original source...
- Huang, J., Yang, M., Liu, P., Yang, G., Wu, C., Zheng, C.: GhDREB1 enhances abiotic stress tolerance, delays GAmediated development and represses cytokinin signalling in transgenic Arabidopsis. - Plant Cell Environ. 32: 1132-1145, 2009.
Go to original source...
- Hughes, M.A., Dunn, M.A.: The molecular biology of plant acclimation to low temperature. - J. exp. Bot. 47: 291-305, 1996.
Go to original source...
- Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. - Plant Physiol. 127: 910-917, 2001.
Go to original source...
- Kitashiba, H., Ishizaka, T., Isuzugawa, K., Nishimura, K., Suzuki, T.: Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. - J. Plant Physiol. 161: 1171-1176, 2004.
Go to original source...
- Knox, A.K., Dhillon, T., Cheng, H., Tondelli, A., Pecchioni, N., Stockinger, E.J.: CBF gene copy number variation at Frost Resistance-t2 is associated with levels of freezing tolerance in temperate-climate cereals. - Theor. appl. Genet. 121: 21-35, 2010.
Go to original source...
- Li, Z., Liu, G., Zhang, J., Bao, M.: Extraction of high-quality tissue-specific RNA from London plane trees (Platanus acerifolia), permitting the construction of a female in florescence cDNA library. - Funct. Plant Biol. 35: 159-165, 2008.
Go to original source...
- Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001.
Go to original source...
- Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., Oda, K.: Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. - Plant J. 37: 720-729, 2004.
Go to original source...
- Mboup, M., Fischer, I., Lainer, H., Stephan, W.: Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. - Mol. Biol. Evol. 29: 3641-3652, 2012.
Go to original source...
- Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., Salinas, J.: The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. - Plant Physiol. 119: 463-469, 1999.
Go to original source...
- Medina, J., Catalá, R., Salinas, J.: The CBFs: three Arabidopsis transcription factors to cold acclimate. - Plant Sci. 180: 3-11, 2011.
Go to original source...
- Movahedi, S., Tabatabaei, B.E.S., Alizade, H., Ghobadi, C., Yamchi, A., Khaksar, G.: Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. - Biol. Plant. 56:37-42, 2012.
Go to original source...
- Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H.: Genomewide analysis of the ERF gene family in Arabidopsis and rice. - Plant Physiol. 140: 411-432, 2006.
Go to original source...
- Navarro, M., Ayax, C., Martinez, Y., Laur, J., El Kayal, W., Marque, C., Teulières, C.: Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. - Plant Biotechnol. J. 9: 50-63, 2011.
Go to original source...
- Nicholas, K.B., Nicholas, H.B., Jr.: GeneDoc: a tool for editing and annotating multiple sequence alignments. - Software distributed by the authors, 1997.
- Novillo, F., Alonso, J.M., Ecker, J.R., Salinas, J.: CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. - Proc. nat. Acad. Sci. USA 101: 3985-399, 2004.
Go to original source...
- Novillo, F., Medina, J., Salinas, J.: Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. - Proc. nat. Acad. Sci. USA 104: 21002-21007, 2007.
Go to original source...
- Pennycooke, J.C., Cheng, H., Roberts, S.M., Yang, Q., Rhee, S.Y., Stockinger, E.J.: The low temperature-responsive, SolanumCBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. - Plant mol. Biol. 67: 483-497, 2008.
Go to original source...
- Prestridge, D.S.: SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. - Comput. appl. Biosci. 7: 203-206, 1991.
Go to original source...
- Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. - Biochem. biophys. Res. Commun. 290: 998-1009, 2002.
Go to original source...
- Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., Lee, I.: Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. - Plant Cell 21: 3185-3197, 2009.
Go to original source...
- Sharabi-Schwager, M., Lers, A., Samach, A., Guy, C.L., Porat, R.: Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. - J. exp. Bot. 61: 261-273, 2010.
Go to original source...
- Skinner, J.S., Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H.H., Hayes, P.M.: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. - Plant mol. Biol. 59: 533-551, 2005.
Go to original source...
- Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. - Mol. Biol. Evol. 24: 1596-1599, 2007.
Go to original source...
- Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571-599, 1999.
Go to original source...
- Thompson, J.D., Gibson, T.J., Plewniak, F.: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. - Nucl. Acids Res. 25: 4876-4882, 1997.
Go to original source...
- Tondelli, A., Francia, E., Barabaschi, D.: Inside the CBF locus in Poaceae. - Plant Sci. 180: 39-45, 2011.
Go to original source...
- Wang, Z., Triezenberg, S.J., Thomashow, M.F., Stockinger, E.J.: Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in transactivation. - Plant mol. Biol. 58: 543-559, 2005.
Go to original source...
- Wang, Z., Ye, S., Li, J., Zheng, B., Bao, M., Ning, G.: Fusion primer and nested integrated PCR (FPNI-PCR): a new highefficiency strategy for rapid chromosome walking or flanking sequence cloning. - BMC Biotechnol. 11: 109, 2011.
Go to original source...
- Wisniewski, M., Norelli, J., Bassett, C., Artlip, T., Macarisin, D.: Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. - Planta 233: 971-983, 2011.
Go to original source...
- Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L., Liu, X.M., Wang, Y.F., Wang, F.W., Zhang, C., Liu, Y., Zong, J.M., Li, H.Y.: Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. - Planta 233: 219-229, 2011.
Go to original source...
- Zarka, D.G., Vogel, J.T., Cook, D., Thomashow, M.F.: Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF Expression) promoter elements and a coldregulatory circuit that is desensitized by low temperature. - Plant Physiol. 133: 910-918, 2003.
Go to original source...
- Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., Tao, Y., Wang, J., Yuan, Z., Fan, G., Xing, Z., Han, C., Pan, H., Zhong, X., Shi, W., Liang, X., Du, D., Sun, F., Xu, Z., Hao, R., Lv, T., Lv, Y., Zheng, Z., Sun, M., Luo, L., Cai, M., Gao, Y., Wang, J., Yin, Y., Xu, X., Cheng, T., Wang, J.: The genome of Prunus mume. - Nat. Commun. 3: 1318, 2012.
Go to original source...
- Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. - Plant J. 39: 905-919, 2004.
Go to original source...
- Zhen, Y., Ungerer, M.C.: Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. - Mol. Biol. Evol. 25: 2547-2555, 2008.
Go to original source...