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Euler system for a barotropic inviscid fluid

Equation of continuity: % = %(t, x) - mass density

∂t%+ divxm = 0

Momentum equation: m = m(t, x) = (%u)- momentum

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, p(%) = a%γ , a > 0, γ > 1

Impermeability boundary conditions or periodic boundary conditions

m · n|∂Ω = 0, or Ω =
(
[−1, 1]|{−1,1}

)d
, d = 2, 3

Initial conditions

%(0, ·) = %0, m(0, ·) = m0



Admissible solutions – energy dissipation

Energy

E =
1

2

|m|2

%
+ P(%), P ′(%)%− P(%) = p(%)

p′ ≥ 0⇒ [%,m] 7→


1
2
|m|2
%

+ P(%) if % > 0

P(%) if |m| = 0, % ≥ 0
∞ otherwise

is convex l.s.c

Energy balance (conservation)

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
= 0

Energy dissipation

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
≤ 0

E =

∫
Ω

E dx , ∂tE ≤ 0, E(0+) =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx



Known facts about Euler equations

Well/ill posedness

Local in time existence of unique smooth solutions for smooth initial
data

Blow–up (shock wave) in a finite time for a generic class of initial
data

Existence of infinitely many weak solution for any continuous initial
data (Chiodaroli, DeLellis–Széhelyhidi, EF...)

Existence of “many” initial data that give rise to infinitely many
weak solutions satisfying the energy inequality (Chiodaroli, EF, Luo,
Xie, Xin...)

Existence of smooth initial data that ultimately give rise to infinitely
many weak solutions satisfying the energy inequality (Kreml et al)

Weak–strong uniqueness in the class of admissible weak solutions
(Dafermos)



Wild solutions?

Charles Hermite [1822-1901]

In a letter to Stieltjes

I turn with terror and horror from this lamentable
scourge of continuous functions with no derivatives

Past: What is not allowed is forbidden

Present: What is not forbidden is allowed

Eduard Feireisl Ill posed problems



Oscillations

Oscillatory sequence

g(x + a) = g(x) for all x ∈ R,

∫ a

0

g(x)dx = 0,

gn(x) = g(nx), n = 1, 2, . . .

Weak convergence (convergence in integral averages)∫
R

gn(x)ϕ(x) dx , where ϕ ∈ C∞c (R).

G(x) =

∫ x

0

g(z) dz∫
R

gn(x)ϕ(x) dx =

∫
R

g(nx)ϕ(x) dx = −1

n

∫
R

G(nx)∂xϕ(x) dx → 0

Beware

gn ⇀ g does not imply H(gn) ⇀ H(g) if H is not linear.



Concentrations

Concentrating sequence

gn(x) = ng(nx)

g ∈ C∞c (−1, 1), g(−x) = g(x), g ≥ 0,

∫
R

g(x) dx = 1.

gn(x)→ 0 as n→∞ for any x 6= 0, in particular gn → 0 a.a. in R;

‖gn‖L1(R) =

∫
R

gn(x) dx =

∫
R

g(x) dx = 1 for any n = 1, 2, . . . .

Convergence in the space of measures∫
R

gn(x)ϕ(x) dx =

∫ 1/n

−1/n

gn(x)ϕ(x) dx

∈
[

min
x∈[−1/n,1/n]

ϕ(x), max
x∈[−1/n,1/n]

ϕ(x)

]
→ ϕ(0) ⇒ gn → δ0



Ill posedness

Theorem [A.Abbatiello, EF 2019]

Let d = 2, 3. Let %0, m0 be given such that

%0 ∈ R, 0 ≤ % ≤ %0 ≤ %,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0,T ) be an arbitrary (countable dense) set of times.
Then the Euler problem admits infinitely many weak solutions %, m with a
strictly decreasing total energy profile such that

% ∈ Cweak([0,T ]; Lγ(Ω)), m ∈ Cweak([0,T ]; L
2γ
γ+1 (Ω;Rd))

but

t 7→ [%(t, ·),m(t, ·)] is not strongly continuous at any τi , i = 1, 2, . . . .



Consistent approximation

Equation of continuity∫ T

0

∫
Ω

[%n∂tϕ+ mn · ∇xϕ] dxdt = e1,n[ϕ]

Momentum equation

∫ T

0

∫
Ω

[
mn · ∂tϕ + 1%n>0

mn ⊗mn

%n
: ∇xϕ+ p(%n)divxϕ

]
dxdt = e2,n[ϕ]

Stability - bounded energy

E(%n,mn) ≡
∫

Ω

[
1

2

|mn|2

%n
+ P(%n)

]
dx

<∼ 1

Consistency

e1,n[ϕ]→ 0, e2,n[ϕ]→ 0 as n→∞



Weak vs strong convergence

Weak convergence

%n → % weakly-(*) L∞(0,T ; (Lγ)(Ω))

mn → m weakly-(*) L∞(0,T ; (L
2γ
γ+1 )(Ω))

Strong convergence (Theorem EF, M.Hofmanová)

K ⊂ [0,T ]× Ω compact

%n → %, mn → m strongly (pointwise) in U open, ∂K ⊂ U

%,m weak solution to the Euler system

⇒

%n → %, mn → m strongly (pointwise) in K



Should we go beyond weak solutions?

However beautiful the
strategy, you should
occasionally look at the
results...
Sir Winston Churchill
[1874-1965]



Dissipative solutions – limits of numerical schemes

Equation of continuity

∂t%+ divxm = 0, %(0, ·) = %0

Momentum balance

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = −divx (Rv + RpI) , m(0, ·) = m0

Energy inequality

d

dt
E(t) ≤ 0, E(t) ≤ E0, E0 =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

E ≡
(∫

Ω

[
1

2

|m|2

%
+ P(%)

]
dx +

∫
Ω

d
1

2
trace[Rv ] +

∫
Ω

d
1

γ − 1
Rp

)

Turbulent defect measures

Rv ∈ L∞(0,T ;M+(Ω;Rd×d
sym )), Rp ∈ L∞(0,T ;M+(Ω))



Basic properties of dissipative solutions

Well posedness, weak strong uniqueness

Existence. Dissipative solutions exist globally in time for any finite
energy initial data

Limits of consistent approximations Limits of consisten
approximations are dissipative solutions, in particular limits of
consistent numerical schemes.

Compatibility. Any C 1 dissipative solution [%,m], % > 0 is a classical
solution of the Euler system

Weak–strong uniqueness. If [%̃, m̃] is a classical solution and [%,m]
a dissipative solution starting from the same initial data, then
Rv = Rp = 0 and % = %̃, m = m̃.

Semiflow selection. There exists a measurable selection of
dissipative solution that forms a semigroup



Komlos (K) convergence

Komlos theorem

{Un}∞n=1 bounded in L1(Q)

⇒

1

N

N∑
k=1

Unk → U a.a. in Q as N →∞

Conclusion for the approximate solutions

1

N

N∑
k=1

%nk → % in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

mnk → m in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

[
1

2

|mn,k |2

%n,k
+ P(%n,k)

]
→ E ∈ L1((0,T )× Ω) a.a. in (0,T )× Ω



Visualising oscillations – Young measures

Limits of compositions

%n → %, mn → m, B(%n,mn)→ B(%,m) 6= B(%,m), B ∈ BC(Rd+1)

Young measure

〈νt,xB(%,m)〉 = B(%,m)(t, x)

Compactness

tightness ⇔ uniform L1 − bound



K–convergence of Young measures [Balder]

Young measure

{Un}∞n=1 bounded in L1(Q) ≈ νnt,x = δUn(t,x)

⇒

1

N

N∑
k=1

ν
nk
t,x → νt,x narrowly a.a. in Q as N →∞

Monge–Kantorowich (Wasserstein) distance∥∥∥∥∥dist
(

1

N

N∑
k=1

ν
nk
t,x ; νt,x

)∥∥∥∥∥
Lq(Q)

→ 0

for some q > 1.
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Bratislava)

Martina Hofmanová
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