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Abstract. An extension of the Monte Carlo Singular System dependent. Each of the orthogonal modes (projections of the
Analysis (MC SSA) is described, based on evaluating andoriginal data onto new orthogonal basis vectors) is character-
testing regularity of dynamics of the SSA modes against thazed by its variance, which is given by the related eigenvalue
colored noise null hypothesis, in addition to the test basedf the covariance matrix. Here we will deal with a univari-
on variance (eigenvalues). The application of the regularityate version of SSA (which, however, can be generalised into
index, computed from a coarse-grained estimation of mutuabh multivariate version, see, e.g. Allen and Robertson, 1996)
information, enhances the test sensitivity and reliability inin which the analyzed data is a univariate time series and
detection of relatively more regular dynamical modes thanthe decomposed matrix is a time-lag covariance matrix, i.e.
those obtained by decomposition of colored noises, in parinstead of several components of multivariate data, a time se-
ticular, in detection of irregular oscillations embedded in redries and its time-lagged versions are considered. This type of
noise. This enhanced MC SSA is successfully applied in dethe SSA application, which has frequently been used espe-
tection of period 7.8 years oscillatory modes in records ofcially in the field of meteorology and climatology (Vautard
monthly average near-surface air temperature from severand Ghil, 1989; Ghil and Vautard, 1991; Keppenne and Ghil,
European locations, as well as in the monthly North Atlantic 1992; Yiou et al., 1994; Allen and Smith, 1994), can provide
Oscillation index. a decomposition of the studied time series into orthogonal
components (modes) with different dynamical properties and
thus “interesting” phenomena such as slow modes (trends)
1 Introduction and regular or irregular oscillations (if present in the data)
can be identified and retrieved from the background of noise
Searching for dynamical mechanisms underlying experimenand/or other “uninteresting” non-specified processes.

tal data in order to understand, model, and predict complex, |n the traditional SSA, the distinction of “interesting”
possibly nonlinear processes, such as those studied in ge@gomponents (signal) from noise is based on finding a thresh-

physics, in many cases starts with an attempt to identifyold (jump-down) to a “noise floor” in a sequence of eigenval-
trends, oscillatory processes and/or other potentially deteryes given in a descending order.

ministic signals in a noisy environment. Singular system (or
singular spectrum) analysis (SSA) in its original form (also
known as principal component analysis, or Karhunegue

This approach might be problematic if the signal-to-noise
ratio is not sufficiently large, or the noise present in the
o : e ... data is not white but “colored”. For such cases statistical
decomposition) is a method for identification and distinction e . : ;

. . . S s . approaches utilizing the Monte Carlo simulation techniques
from noise of important information in multivariate data. Itis . )
" g .have been proposed (Ghil and Vautard, 1991; Vautard et al.,
based on an orthogonal decomposition of a covariance matmi : ) : : !
992) for reliable signal/noise separation. The particular case

of multlvanat_e data under study. The SSA provides an Or_of the Monte Carlo SSA (MCSSA) which considers the “red”
thogonal basis onto which the data can be transformed, mak-

. S “ | . noise, usually present in geophysical data, has been intro-
ing thus individual data components (“modes”) linearly in duced by Allen and Smith (1996). In this paper we present

Correspondence tavl. Palus and develop an extension of the Monte Carlo Singular Sys-
(mp@cs.cas.cz) tem Analysis based on evaluating and testing regularity of
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dynamics of the SSA modes. Then, the modesl.k

A brief introduction into the Monte Carlo singular system .
analysis is given in Sect. 2, its enhancement by testing th%_k:Z wiex! (6)
dynamics of modes is explained in Sect. 3. The practical™ = r
implementation of the enhanced MCSSA, used here, as well
as examples of its applications using numerically generatedor k=1, ..., m are considered as the “signal” part, and the
data are presented in Sect. 4. Section 5 summarizes the afi0dess/, k=m + 1, ..., n, are considered as the noise part

plication of the enhanced MCSSA to monthly average near-©f the original time series. The “signal” modes can be used
surface temperature records from ten European locations. AP reconstruct the denoised signilas

enhanced MCSSA detection of an oscillatory mode in the "

NAO index series and its comparison with the related mode;lk: Z vl (7
detected in the temperature data is described in Sect. 6. Dis- =7

cussion and conclusion are given in Sect. 7. o _ _
Of course, the original time ser|a$ can be reconstructed

back from the modes as
2 Monte Carlo Singular System Analysis

n
xf=> v, (8)
Let a univariate time serieg (i)}, i=1, ..., Np, be a real- =1
ization of a stochastic procegB(i)} which is stationary and

ergodic. A map into a space efdimensional vectorg() ' the latter relation — decomposition (8), the modg<an

with components* (i), wherek=1, ..., n, is given as also be interpreted as time-dependent coefficients and the or-
thogonal vectors,={vy;} as basis functions, usually called
K=yl +k - 1). 1) the empirical orthogonal functions (EOF’s).
The clear eigenvalue-based signal/noise distinction (5) can
The sequence of the vector§), i=1, ..., N=Ng— (n — 1), be obtained only in particularly idealized situation when the
is usually referred to as thex N trajectory matrixX={x*}, signal/noise ratio is large enough and the background con-

the numbem of the constructed components is called the sists of a white noise. A kind of a colored noise, the “red”
embedding dimension, or the length of the (embedding) win-noise, which is particularly important for its presence in
dow. Suppose that the studied time sefig@)} results from  many geophysical processes (Allen and Smith, 1996), can
a linear combination af: different dynamical modes; <n. be modeled by using an AR(1) model (autoregressive model
Then, in an ideal case, the rank of the trajectory matris  of the first order):

rank(X)=m, and, X can be transformed into a matrix with R ) . )

only m nontrivial linearly independent components. Instead () —#=e (i —D—i)+yz(0), ©)

of thenx N matrix X itis more convenient to decompose the \yheresi is the process meam,andy are process parameters,

: e = XTY i - . . . re .
symmetricn xn matrix C = X* X, since rankk) = rankC).  and,(;) is a Gaussian white noise with a zero mean and a unit
The elements of the covariance maithare

variance.
N The red noises possess power spectra of tifetylpe, and
cu=(1/N) Z x"(,‘)xl(,'), 2) their SSA eigenspectra have the same character, i.e. an eigen-
i=1 spectrum of a red noise is equivalent to a coarsely discretized

) o power spectrum, where the number of frequency bins is given
vx/]{hgre YN is the proper normalization and the components,y the embedding dimension The eigenvalues related to
x5, i=1,..., N, are supposed to have zero mean. Thee sjow modes are much larger than the eigenvalues of the
symmetric matrixC can be decomposed as modes related to higher frequencies. Thus, in the classical
SSA approach applied to a red noise, the eigenvalues of the
slow modes might incorrectly be interpreted as a (nontrivial)
signal, or, on the other hand, a nontrivial signal embedded
in a red noise might be neglected, if its variance is smaller
than the slow-mode eigenvalues of the background red noise.
Therefore the mutual comparison of eigenvalues inside an
eigenspectrum cannot lead to a reliable detection of a non-
trivial signal, if a red noise is present in studied data. In
order to correctly detect a signal in a red noise, the following
In the presence of noise, however, all eigenvalues are positivépproach has been proposed (Allen and Smith, 1996):
and the relation (4) takes the following form (Broomhead andFirst, the eigenvalues are plotted not according to their val-
King, 1986): ues, but according to a frequency associated with a particular

mode (EOF), i.e. the eigenspectrum in this form becomes a
01> ...>0, >> Opt1>...>0, > 0. (5) sort of a (coarsely) discretized power spectrum in general,

c=VxVv’, €))

where V={v;;} is an nxn orthonormal matrix,
¥=diago1, 02, ..., 0,), 0; are non-negative eigenvalues of
C by convention given in descending ordaro>> ... >0;,.

If rank(C)=m <n, then

01> ...20,>0p11=...=0,=0. (4)
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not only in the cases of red noises (when the eigenspectrthe system “forgets” information about its previous states,
have naturally this form, as mentioned above). can be an important quantitative characterization of temporal
Second, an eigenspectrum obtained from a studied data isomplexity in the system’s evolution. The time serfe&)},

compared, in a frequency-by-frequency way, with eigenspecwhich is a recording of (a part of) the system temporal evo-
tra obtained from a set of realizations of an appropriate noisdution, can be considered as a realization of a stochastic pro-
model (such as the AR(1) model, Eqg. 9), i.e. an eigenvaluecess, i.e. a sequence of stochastic variables. Uncertainty in
related to a particular frequency bin obtained from the dataa stochastic variable is measured by its entropy. The rate in
is compared with a range of eigenvalues related to the samwhich the stochastic process “produces” uncertainty is mea-
frequency bin, obtained from the set of so-called surrogatesured by its entropy rate.

data, i.e. the data artificially generated according to the cho- The concept of entropy rates is common to the theory

sen noise model (null hypothesis) (Allen and Smith, 1996;0f stochastic processes as well as to the information the-

Smith, 1992; Theiler et al., 1992; P&|u1995). ory where the entropy rates are used to characterize informa-
The detection of a nontrivial Signal inan eXperimental time tion production by information sources (Cover and ThomaS,

series becomes a statistical test in which the null hypothe1991).

sis that the experimental data were generated by a chosen

noise model is tested. .When.(an) e|ggnvalue(s_) gssoc!ateg projection of a trajectory of a dynamical system, evolving
with some frequency bin(s) differ(s) with a statistical sig- in some measurable state space. A. N. Kolmogorov, who in-

nificance from the range(s) of related noise model eigenval . e :
. . r he theoretical con f classification of dynami-
ues, then one can infer that the studied data cannot be fuIIt oduced the theoretical concept of classification of dyna

. . : . ¥al systems by information rates, was inspired by the infor-
explained by th? con5|de_r_ed null hyp_ot_he3|§ (noise quel)matign theoryyand generalized the notionpof theyentropy of
and could contain an additional (nontrivial) signal. This is & 2 information source (Sinai, 1976). The Kolmogorov-Sinai

rough sketch of the approach, for which we will use the term . e
: . entropy (KSE) (Cornfeld et al., 1982; Petersen, 1983; Sinai,
Monte Carlo SSA (MCSSA), as coined by Allen and Smith §976) is a topological invariant, suitable for classification of

(see (Allen and Smith, 1996) where also a detailed accoun ynamical systems or their states, and is related to the sum

of the MCSSA approach with analyses of various levels of ) -, )
null hypotheses is given) although the same term was earlieﬁ;c :22 tsry]/:(t)enrenms gfosglsvii Ia’gs%n ov exponents (LE) according

used for other SSA methods, which considered white noise

background (Ghil and Vautard, 1991; Vautard et al., 1992).  Thus, the concept of entropy rates is common to theories
based on philosophically opposite assumptions (randomness

vs. determinism) and is ideally applicable for characteriza-

3 Enhancement of MCSSA by testing dynamics of tion of complex geophysical processes, where possible deter-
modes ministic rules are always accompanied by random influences.

However, possibilities to compute the exact entropy rates
The above MCSSA is a sophisticated technique, however, ifrom experimental data are limited to a few exceptional
still assumes a very simple model that the signal of interestases. Therefore P&l({1996) has proposed “coarse-grained
has been linearly added to a specified background noise anghtropy rates” (CER'’s) instead. The CER’s are relative mea-
therefore the variance in the frequency band, characteristigures of regularity and predictability of analyzed time series
for the searched signal, is significantly greater than the typand are based on coarse-grained estimates of information-
ical variance in this frequency band obtained from the con-theoretic functionals. In the simplest case, applied here,
sidered noise model. If the studied signal has a more compliwe use so called mutual information. The mutual infor-
cated origin, e.g. when an oscillatory mode is embedded int@nation 7 (X; Y) of two random variablex andY is given
a background process without significantly increasing vari-by 1 (X; Y)=H (X)+H (Y)—H (X, Y), where the entropies
ance in a particular frequency band, the standard MCSSAy (X), H(Y), H(X, Y) are defined in the usual Shannonian
can fail. In order to be able to detect any interesting dynam-sense (Cover and Thomas, 1991). A detailed account on rela-
ical mode independently of its (relative) variance, Band  tions between the entropy rates and the information-theoretic
Novotna (1998) have proposed to test also dynamical propfunctionals is given in (Pakj 1996, 1997a). For a time se-
erties of the SSA modes against the modes obtained fronjies {x(¢)}, considered as a realization of a stationary and
the surrogate data. How can we characterize dynamics in argodic stochastic proce$x ()}, r=1,2,3, ..., we com-
simple, computationally effective way? pute the mutual informatior (x; x,) as a function of time

Consider a complex, dynamic process evolving in time. Alag . In the following we will markx () asx andx(¢+7)

series of measurements done on such a system in consecsisx,. For defining the simplest form of CER let us find such
tive instants of time=1, 2, . .. is usually called a time series g5, that fort’>tmax I (x; x;/)~0 for the analysed datasets.
{y(t)}. Consider further that the temporal evolution of the Then we define the norm of the mutual information
studied system is not completely random, i.e. that the state
of the system in time in some way depends on the state in
which the system was in tinte-t. The strength of such a de- 1 (x: x0)||= At
pendence per a unit time delayor, inversely, a rate at which T

Alternatively, the time serieéy(z)} can be considered as

Tmax

Yo Ixx) (10)

—Tmint+AT
max—Tmin+AT =
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with Tmin=At=1 sample as a usual choice. The CERs p<0.05 that the data can be explained by the null noise
then defined as model.
hr=1I(x, xr)— 11 (x; x0)||. (11) 6. For each SSA mode (a projection of the data onto a par-

It has been shown that the CER provides the same classi- ticular EOF) its regularity index_is cpmputed, as well as
fication of states of chaotic systems as the exact KSEgPalu ~ 10F €ach SSA mode for all realizations of the surrogate
1996). Since usuallyto=0 and I (x; x)=H (X) which is data. The r_egularlty indices are pro_cessed and statisti-
given by the marginal probability distribution(x), the sole cally tested in the same way as the eigenvalues. The reg-

quantitative descriptor of the underlying dynamics is the my-  Ularity index is based on mutual information obtained
tual information norm (Eg. 10) which we will call the regu- by a simple box-counting approach with marginal equi-

larity index. Since the mutual informatidr(x; x;) measures quantization (Paksy 1995, 1996, 1997a). In general, this

the average amount of information contained in the process ~ [€Sting approach is not limited to the particular regu-
{X} about its futurer time units ahead, the regularity index larity index used, but can be based on a suitable in-
111 (x; x2)|| gives an average measure of predictability of the formanon/entrop_y measure obtained by a different al-
studied signal and is inversely related to the signal's entropy ~ 9°"ithm, employing novel methods such as that of re-
rate, i.e. to the rate at which the system, or process, produc-  currence plots (Romano et al., 2004); or even different
ing the studied signal, “forgets” information about its previ- complexity measures (Wackerbauer et. al., 1994).

ous states. . . . .
Performing MCSSA using the embedding window of the

lengthn, there arex eigenvalues in the eigenspectrum, and
4 Implementation of the enhanced MCSSA and numer-  statistical tests are done. Therefore the problem of the simul-

ical examples taneous statistical inference should be considered in appli-
_ _ cations (see (Pa#y) 1995) and references therein). However,
We realize the enhanced version of MCSSA as follows.  since here we are interested in a detection of a signal in a spe-

N . . cific frequency band (and not in rejecting the null hypothesis
1. The stuqlled tlme Seres unde_rgoe_s SSA as described i y a digression from the surrogate range by an eigenvalue or
Sect. 2, 1.. using an emb_edeg window of Iengtthe a regularity index in any frequency band), we will not discuss
nxn Iag—correl_atlon matrixC is decomposed using the this topic here.
i, the posiion of each eigenvalus on the abscieea 5, REIECUNS the nul hypothesis of the AR(L) (or other ap-
N . ) . %ropriate) noise model, one can infer that there is something
given by the dominant frequency associated with the " more in the data than a realization of the null hypothesis

ltﬁt:itfgg(’j If%fifr?éidisjn :gz(rzgzti?]t?(t)::. a-rrgihl':r’(noise) model. The rejection based on the eigenvalues in-
Pro) L P ._dicates a different covariance structure than the noise model
EOF, the power spectrum of the projection (mode) is

timated. and the fr ncv bin with the hiahest pow rused. The rejection based on the regularity index indicates
estimated, and e frequency . 1€ NIGNESL POWET, ot the studied data contains a dynamically interesting sig-
is identified. This spectral coordinate is mapped onto

. . - o nal with higher regularity and predictability than a mode ob-
one of th.al frequency bins, which equidistantly divide tained by linear filtration of the considered noise model.
the abscissa of the eigenspectrum.

The presented approach is demonstrated here by using nu-
2. An AR(1) model is fitted on the series under study, the merically generated data.
residuals are computed. 1. A periodic signal with randomly variable amplitude
(Fig. 1a) was mixed with a realization of an AR(1) process
3. The surrogate data are generated using the above AR(Ljith a strong slow component (Fig. 1b). The used noise
model, “scrambled” (randomly permutated in temporal model is defined as;=0.933v;,_1+&, where&; are Gaus-
order) residuals are used as innovations. sian deviates with a zero mean and a unit variance. The sig-

4. Each realization of the surrogates undergoes SSA as déla.l to noise ratios optained by mixing the' signals. were .1:2
scribed in item 1. Then, the eigenvalues for the whole(F'g' 1c), and 1:4 (Fig. 1d). (The given signal/noise ratios

surrogate set, in each frequency bin, are sorted and thare the ratios of the standard deviations.) The latter two se-

values for the 2.5th and 97.5th percentiles are found.ries are gnalyzed by the pres?”ted method. - i
In eigenspectra, the 95% range of the surrogates eigen- The eigenspectrum of the time series consisting of the sig-

value distribution is illustrated by a horizontal bar be- Na! (Fig. 1&) and the AR(1) noise (Fig. 1b) in the ratio 1:2
tween the above percentile values. (l_:lg. 1c) is presented in Fig. 2a, where logarithms of the
eigenvalues are plotted as the bursts (“LOG POWER"). The
5. For each frequency bin, the eigenvalue obtained fromseries is considered as unknown experimental data, so that an
the studied data is compared with the range of the surroAR(1) model is fitted on the data and the surrogates are gen-
gate eigenvalues. If an eigenvalue lies outside the rangerated as described above. The vertical bars in the eigenspec-
given by the above percentiles, the null hypothesis oftrum represent the surrogate eigenvalue ranges from 2.5th
the AR(1) process is rejected, i.e. there is a probabilityto 97.5th percentiles, which were obtained from 1500 sur-
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Fig. 1. Numerically generated test dat@) A periodic signal with ||||\|:‘!||!!|‘[”
randomly variable amplitude was mixed with) a realization of an . Lt
AR(1) process with a strong slow component, obtaining the signal 0 02 04 0 003 006 O 003 006
to noise ratio 1:Zc), and 1:4(d). DOMINANT FREQUENCY [CYCLES per TIME-UNIT]

Fig. 2. The standard — eigenvalue bagej(c) and the enhanced
— regularity index baseftl)—(f) MCSSA analysis of the numerical

rogate realizations (here, as well as in the following exam—data’ presented in Fig. 1. (a) The full eigenspectrum and (b) the

F_"es)' The elgenvalues. of the AR(1) surrogr_;\tes unlformlyIow-l‘requency part of the eigenspectrum — logarithms of eigenval-
_f'" all the n frequency pms (here, as well as in the follow- ues (“LOG POWER") plotted according to the dominant frequency

ing examplen=100), while in the case of the test data, some gssociated with particular modes, for the signal to noise ratio 1:2.
bins are empty, others contain one, two or more eigenvaluesc) Low frequency part of the eigenspectrum for the signal to noise
We plot the surrogate bars only in those positions, in whichratio 1:4. (d) The regularity spectrum and (e) its low frequency

(an) eigenvalue(s) of the analyzed data exist(s). Note tlie 1 part for the signal to noise ratio 1:2. (f) Low frequency part of the

character of the surrogate eigenspectrum, i.e. the eigenvalugsgularity spectrum for the signal to noise ratio 1:4. Bursts — eigen-
plotted according to increasing dominant frequency associvalues or regularity indices for the_ an_alysed (_Jlatg; b_ars - 95% of the
ated with the related modes are monotonously decreasing iﬁurrogate eigenvalues or regularity index dlst.rlbutlon, i.e. the bar
a 1/f* way. The low-frequency part of the eigenspectrum is drawn from the 2_.5t_h tq the 97.5th _percentlles of the surrogate
from Fig. 2ais enlarged in Fig. 2b. The two data eigenvaluese'ger'\"'j“ues”e‘:"lJIarIty indices distribution.
related to the frequency 0.02 (cycles per time unit) are clearly
above the surrogate bar, i.e. they are significant on the 95%

level and the null hypothesis is rejected. Further study ofig noise ratio 1:2 (Figs. 2d and 2e) one data regularity index
the significant modes shows that they are related to the emhas heen found significantly higher than the related surrogate
bedded in noise signal from Fig. 1a, in particular, one of thejngices. It was obtained from the mode related to the fre-
modes contains the signal together with some noise of simyyency bin 0.02, as in the case of the significant eigenvalues
ilar frequencies, and the other include an oscillatory modej, Figs. 2a and 2b. This is the mode which contains the em-
shifted byr/2 relatively to the former. Note that the simple pedded signal (Fig. 1a) together with some noise of similar
SSA based on the mutual comparison of the data eigenvalue@equencies_ The orthogonal mode, related to the same fre-
could be misleading, since the AR(1) noise itself “produces” guency bin, which has the variance comparable to the former
two or three eigenvalues which are larger than the two eigen(pigs_ 2a and 2b), has its regularity index close to the 97.5th
values related to the signal embedded in the noise. percentile of the surrogate regularity indices distribution. In
The same analysis applied to the series possessing the sigther words, if a (nearly) periodic signal is embedded in a
nal/noise ratio 1:4 (Figs. 2c), however, fails to detect the em-colored) noise, the SSA approach, in principle, is able to
bedded signal — all eigenvalues obtained from the test dataxtract this signal together with some noise of close frequen-
are well confined between the 2.5th and 97.5th percentilegies, and produces an orthogonal “ghost” mode which has a
of the surrogate eigenvalues distributions. Applying the testcomparable variance, however, its dynamical properties are
based on the regularity index on the mixture with the signalcloser to those of the modes obtained from the pure noise
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Fig. 3. Numerically generated test datéa) The wavelet filtered
signal from Fig. 1a was embedded ir{tn) a realization of a mul-
tifractal process, obtaining the ratio of related wavelet coefficients
1:2(c), and 0.5:0.5d).
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(null model), as measured by the regularity index (Eq. 10).Fig. 4. The low frequency parts of the MCSSA eigenspe(da(c)
Nevertheless, the regularity index used as a test statistic in thand regularity spectréd)—(f) for the sighal embedded into a multi-
MCSSA manner is able to detect the embedded signal with dractal process with wavelet coefficient ratio 1:2 (a), (d) and 0.5:0.5
high statistical significance in this case (signal:noise = 1:2),(b). (¢). (€), (). Bursts — eigenvalues or regularity indices for the
as well as in the case of the signal to noise ratio 1:4 (Fig. Zf)'gnalysed data; bars — 95% of the surrogate eigenvalues or regularity

when the standard (variance-based MCSSA) failed (Fig. 2c)Ndex distribution obtained from the AR(1) (a), (b). (d), (¢) and the
In the latter case the orthogonal “ghost” mode did not appearfnu't'fr""ctaII (©), () surrogate data.
and the regularity index of the signal mode is lower than in
the previous case, since the mode contains larger portion of
the isospectral noise, however, the signal mode regularity inthjs scale (frequency band) does not excess the related vari-
dex is still Safely above the Surrogate bar, i.e. Signiﬁcant Withance of the “clean” multifractal. Then' it is not Surprising,
p<0.05 (Fig. 2f). that the variance-(eigenvalues)-based MCSSA test, using the
AR(1) surrogate data (Figs. 4a and 4b) clearly distinguishes
2. As a more complex example we “embed” the testthe signal from the multifractal background in the first case
signal (Fig. 1a) into a realization of a multifractal process (Fig. 4a) including its orthogonal “ghosts”, while in the sec-
(Fig. 3b) generated as a log-normal random cascade on and case no eigenvalue is over the AR(1) surrogate range, but
wavelet dyadic tree (Arneodo et al., 1998) using the discretahe slow trend mode (Fig. 4b). The AR(1) process is unable
wavelet transform (Press et al., 1986). Using the waveleto correctly mimic the multifractal process — the slow mode
decomposition, we embedd the most significant part of the(the zero frequency bin) scores as a significant trend over
signal (Fig. 1a) related to a particular wavelet scale — thisthe AR(1) surrogate range, while the variance on subsequent
wavelet-filtered signal is illustrated in Fig. 3a. The mixing is frequencies is overestimated (Figs. 4a and 4b). On the other
done in the space of the wavelet coefficients, in the first caséand, even the AR(1) surrogate model is able to detect the
(in Fig. 3 referred to as “signal added to multifractal”) the added signal in the first case (Fig. 4a). If we use realizations
standard deviation (SD) of the signal wavelet coefficients isof the same multifractal process as the surrogate data, the sig-
the double of the SD of the wavelet coefficients of the mul- nal is detected in the first case (not presented, just compare
tifractal signal in the related scale (Fig. 3c), i.e. the addedthe bursts on frequency 0.02 in Fig. 4a and the related surro-
signal deviates from the covariance structure of the “noise’gate bar in Fig. 4c), while in the second case, the eigenvalues-
(multifractal) process, while in the second case we adjustedased MCSSA neglects the signal embedded into the multi-
the SD of both sets of the wavelet coefficients to 50% of thefractal “noise” — all the data mixture eigenvalues (bursts) are
SD of the wavelet coefficients of the original multifractal sig- inside the multifractal surrogate bars (Fig. 4¢). In the MC-
nal in the related scale (Fig. 3d), so that the total variance irSSA tests using the regularity index, the embedded signal
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Fig. 5. Enhanced MCSSA analysis of the Ber{a), (c)and Prague  Fig. 6. Enhanced MCSSA analysis of the Prague near-surface air

(b), (d) near-surface air temperature series. Low-frequency parts ofemperature serieg), (c) and the NAO index(b), (d). Low-

eigenspectra (a), (b) and regularity index spectra (c), (d). For thérequency parts of eigenspectra (a), (b) and regularity index spec-

burst/bars key see the caption of Fig. 2. tra (c), (d). For the burst/bars key see the caption of Fig. 2.
Both datasets span the period 1824-2002, the embedding dimen-
sionn=480 months was used.

is safely detected together with its orthogonal “ghosts” and

higher harmonics not only in the first case (Fig. 4d), but also ] ) ]

in the second case, either using AR(1) (Fig. 4e) or the multi-With the hypothesis of the AR(1) noise, however, no oscil-

fractal surrogate data (Fig. 4f), when it is, from the point of lations or other dynamical phenomena exceeding the AR(1)

view of the covariance structure, indistinguishably embeddedM0del, have been detected. The situation is different using
into the multifractal process. the test based on the regularity index (Figs. 5¢ and 5d), when,

in addition to the significant long-term trend, also another
mode, related to oscillatory dynamics with a period of 7.8
5 Application of the enhanced MCSSA to temperature  years (approx. 0.01 cycles per month, Figs. 5¢ and 5d), has
records been found significantly different from the AR(1) null hy-
pothesis.
The above numerical examples demonstrated the power of Similar result has been found in the analysis of the series
the enhancement of the MCSSA in which we test also thefrom Wroclaw and De Bilt. In the data from the other six
dynamical properties of the SSA modes, namely its regularstations only the long-term trend has been found significant,
ity, against the dynamical properties of the surrogate SSAput no oscillations. This result could lead to the question
modes. In the following we apply this approach to the of simultaneous statistical inference, namely to the probabil-
monthly average near-surface air temperature series from tejty of randomly occurring significances in a part of the data
European stations (Stockholm, De Bilt, Paris — Le Bourget,set. Considering geographical locations of the stations, how-
Geneve — Cointrin, Berlin — Tempelhof, Munich — Riem, Vi- ever, we can see a nonrandom pattern in the occurrence of the
enna — Hohe Warte, Budaors, Wroclaw I, obtained from significant results, since the period 7.8 year cycle has been
the Carbon Dioxide Information Analysis Center Internet found in the stations located slightly over°56f northern
server (ftp://cdiac.esd.ornl.gov/pub/ndp041) and to a seriegatitude.
from Prague — Klementinum station from the period 1781—
1988. The long-term monthly averages were subtracted from
the data, so that the annual cycle was effectively filtered-out6 Period 7.8 years cycle detected in the NAO index
The enhanced MCSSA analyses of the Berlin and Prague
temperature series, using the embedding window of lengtiirhe North Atlantic Oscillation is a dominant pattern of at-
n=100 (months), are presented in Fig. 5. In the classicalmospheric circulation variability in the extratropical North-
MCSSA test based on eigenvalues (Figs. 5a and 5b) the onlgrn Hemisphere and it is a major controlling factor of basic
significance has been found for the zero frequency mode, i.emeteorological variables including the temperature (Hurrell
there is a significant long-term trend present, inconsistenet al., 2001). The NAO index is traditionally defined as the
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' 7 Conclusions
(a) NAO
An extension of the Monte Carlo SSA method has been de-
scribed, based on evaluating and testing regularity of dynam-
ics of the SSA modes against the colored noise null hypoth-
() PRAGUE esis in addition to the test based on variance (eigenvalues).
It has been demonstrated that such an approach could en-
hance the test sensitivity and reliability in detection of rel-
2 . . . atively more regular dynamical modes than those obtained
1850 1900 1950 2000 by decomposition of colored noises. The standard MCSSA
TIME [YEARS] can detect only those signals whose variance significantly
exceed the variance of background noise in the frequency
range of the signal to be detected. The proposed enhanced
MCSSA version can detect signals with relatively small vari-
ance, or even signals which are “embedded” into the vari-
ance/frequency structure of the background noise, if the sig-
nals have more regular dynamics than related SSA modes
obtained by linear filtering of the model background noise.
normalized pressure difference between the Azores and Ice- The enhanced MCSSA has been applied to records of
land. The NAO data, used here, and their description aremonthly average near-surface air temperature from ten Eu-
available at http://www.cru.uea.ac.uk/cru/data/nao.htm. ropean locations. In the part of the latter, located over 50
of northern latitude, an oscillatory mode with a period of 7.8
Gamiz-Fortis et al. (2002) have applied the standard MC-years has been detected. Then the same oscillatory mode has
SSA method on the winter NAO index, i.e. yearly sampled been detected in the monthly NAO index. Can the existence
values obtained by averaging December, January and Febraf the same oscillatory mode in the NAO index and in the
ary index values, and, using an embedding window of lengthtemperature records be regarded as an evidence that the NAO
n=40 years were able to identify an oscillatory mode with ainfluences the European temperature (also) on this tempo-
period about 7.7 years. According to other authors (Fernanral scale? Before answering this question, possible relations
dez et al., 2003) the NAO index can be considered just as #etween these oscillatory modes should be carefully stud-
pink noise with a very little possible predictability. Recalling ied. Analyses of possible phase synchronization (Rosenblum
our results with the temperature records, we ask if we couldet al., 1996; Pak, 1997b) and causality relations (Rosen-
detect an oscillatory mode with the period around 7.8 yearslum and Pikovsky, 2001; Paland Stefanovska, 2003) are
in the monthly NAO index. As the first step we update the the next step planned in this project. The present result, how-
Prague temperature data and remove a portion of their hisever, is already important, since the discovered period 7.8
torical part in order to have the data set covering the samgears oscillatory modes in the NAO index and in the temper-
period as the available NAO data, i.e. the period of 1824—-ature records can play an important role in predictions and
2002. Since @miz-Fortis et al. (2002) used the embedding evaluation of climate changes on near-decadal scales at the
window of 40 years, we will use the same time window, but mid- and higher latitudes in European regions.
in monthly sampling we have=480. Repeating the analy-
sis for the Prague temperature data we obtain the same resUitknowledgementsThis study is supported by the Grant Agency
as above: In the eigenvalue-based MCSSA the only signifiof the Academy of Sciences of the Czech Republic, project
cant mode is related to slow trends (Fig. 6a), while in the testNo. IAA3042401.
using the regularity index also the oscillatory mode with the
period of 7.8 years is detected (Fig. 6¢). Analysing the NAO Edited by: M. Thiel
index, the same oscillatory mode is already apparent in thétéviewed by: two referees
eigevalue-based MCSSA test, however, its eigenvalues lie on
the edge of significance (Fig. 6b). Using the regularity in-
dex (Fig. 6d) the period 7.8 years mode is reliably detected References
i.e. its regularity index lies clearly above the surrogate bar _ o o o
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Fig. 7. The period 7.8 years oscillatory mode extracted from the
monthly NAO index(a) and the monthly Prague near-surface air
temperature serig®).
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