Electron Transfer in (Bio)Molecular Systems: Time-Resolved Vibrational Spectroscopy and Theory
New mechanisms of acceleration and control of protein electron transfer will be unraveled and utilized by combination of ultrafast time-resolved vibrational spectroscopy and quantum chemical molecular dynamics applied to metalloprotein (azurin) mutants derivatized with organometallic photosensitizers and synthetic Donor-Bridge-Acceptor supramolecules. We will focus on coupling between electron-transfer dynamics and structural motions of reacting systems and their environment, electron hopping through tryptophan residues, characterization of Trp•+ intermediate in proteins, and electronic/vibrational communication through the bridge, namely peptide bonds, as well as pi-pi interactions along electron-transfer pathways. Dynamic effects of additional vibrational excitation of the bridge and product structural reorganization upon ultrafast electron transfer will be studied. This research will provide a deep insight into electron-transfer mechanisms and reveal new ways of designing efficient, fast-operating systems for light-energyharvesting, molecular photonics, and photocatalysis.