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Partition Theorems for the Integers

Combinatorial lemma (I. Schur, 1916)

If n > m!e , then any partition/coloring of [n] = {1, . . . ,n} with m
classes/colors yields one class containing a solution of x + y = z.

2 4 5 8 14 151 4 6 9 12 163 7 10 11 13 17
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Partition Theorems for the Integers

Conjecture of Baudet (and Schur)

If the natural numbers are split into two classes, then one class
contains arithmetic progressions with any given number of terms.

1 2 5 6 12 14 15 17 21 273 4 7 9 16 18 19 24 268 10 11 13 20 22 23 25

Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 4



Partition Theorems for the Integers

van der Waerden’s Theorem 1927
For all integers m ≥ 2 and k ≥ 3 there exists an integer n such that any
coloring of [n] with m colors yields a monochromatic arithmetic
progression with k terms.

1 2 5 6 12 14 15 17 21 273 4 7 9 16 18 19 24 268 10 11 13 20 22 23 25
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A General Perspective

Question
Which linear equations have such a partition-property?

Examples:
Schur: x + y = z ✓

van der Waerden: x + y = 2z ✓ (with x ≠ y)

Rado’s Theorem 1933
Characterization of (systems of) linear equations with the partition-property.
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A General Perspective

Question
Which linear equations have such a partition-property?

Examples:
Schur: x + y = z ✓

van der Waerden: x + y = 2z ✓ (with x ≠ y)
but: x + y = 3z there is a 4-coloring of N with

no monochromatic solution

Rado’s Theorem 1933
Characterization of (systems of) linear equations with the partition-property.
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Density Versions

Partition Theorems: Schur: x + y = z ✓
van der Waerden: x + y = 2z ✓

Questions

What is the size of the largest subset not containing a solution?

Density version of Schur’s theorem

● odd numbers contain no solution for Schur’s equation
⇒ there are sets of density 1/2 with no solution

● every A ⊆ [n] with ∣A∣ > ⌈n/2⌉ contains a solution

How about a density version of van der Waerden’s theorem?
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Erdős-Turán Conjecture

Question (Erdős & Turán, 1936)

Set
rk(n) = max{∣A∣∶ A ⊆ [n] containing no k-AP}.

Is it true that

lim
n→∞

rk(n)
n

= 0 ?

Positive answerÔ⇒ van der Waerden’s Theorem
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Bounds for rk(n)

Lower Bound
Behrend (1946): r3(n) ≥ n

exp(c√log n)
in particular

rk(n) ≥ r3(n) ≥ n1−o(1)

Upper Bounds
Roth (1953): r3(n) ≤ cn

log log n
further improved by Heath-Brown (1987), Szemerédi (1990),
Bourgain (1999,2008), Sanders (2011) and Bloom (2016)

r3(n) ≤ c
(log log n)4

log n
n

Szemerédi (1969): r4(n) = o(n)

Szemerédi’s Theorem 1975
For every integer k ≥ 3 we have rk(n) = o(n) .
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Szemerédi (1969): r4(n) = o(n)
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Proofs of Szemerédi’s Theorem

Different proofs of Szemerédi’s Theorem have appeared:
Combinatorics/Graph Theory (Szemerédi)
→ used van der Waerden’s theorem
→ introducing quasi-random methods in graph theory

Ergodic Theory (Furstenberg)
→ far reaching generalizations (e.g. multidimensional versions)
Fourier Analysis (Roth, Gowers)
→ led to best numerical bounds
Hypergraph Method

This talk
We will discuss the hypergraph approach here.

Remark
Other proofs appeared over the last decade:
● Elek and Szegedy using non-standard analysis
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Different proofs of Szemerédi’s Theorem have appeared:
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II. Graphs and hypergraphs



Graphs and Hypergraphs

Definition
A k-uniform hypergraph (k-graph) H(k) on V is a pair (V,E), where

V is a finite set, called the vertex set and

E is a collection of k-element subsets of V , called the edge set.

cliques / complete graphs
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 11



Simple Triangle Graphs

Definition
A graph G is a simple triangle graph if each edge is in precisely one triangle.

Observation (Ruzsa & Szemerédi)
Theorem Ô⇒ Roth’s Theorem (r3(n) = o(n))
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 12



Simple Triangle Graphs

Definition
A graph G is a simple triangle graph if each edge is in precisely one triangle.

Observation (Ruzsa & Szemerédi)
Theorem Ô⇒ Roth’s Theorem (r3(n) = o(n))
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Simple Triangle Graphs

Definition
A graph G is a simple triangle graph if each edge is in precisely one triangle.

Question (Brown, Erdős & T. Sós, 1973)
How many edges can a simple triangle graph on n vertices have?

Observation (Ruzsa & Szemerédi)
Theorem Ô⇒ Roth’s Theorem (r3(n) = o(n))
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Simple Triangle Graphs

Definition
A graph G is a simple triangle graph if each edge is in precisely one triangle.

Theorem (Ruzsa & Szemerédi, 1978)
Every simple triangle graph on n vertices has o(n2) edges.

Observation (Ruzsa & Szemerédi)
Theorem Ô⇒ Roth’s Theorem (r3(n) = o(n))
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H(k) is a simple clique hypergraph if each
edge of H(k) is in precisely one copy of K(k)k+1.

Question
Every k-uniform, simple clique hypergraph on n vertices has o(nk) edges.

Jointly with Frankl we showed

Conjecture holds for k = 3 (which implies r4(n) = o(n))

Clique Union Lemma (Gowers / Nagle, R., Schacht & Skokan, 2006)

Every k-uniform, simple clique hypergraph on n vertices has o(nk) edges.
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Conjecture holds for k = 3 (which implies r4(n) = o(n))

Clique Union Lemma (Gowers / Nagle, R., Schacht & Skokan, 2006)

Every k-uniform, simple clique hypergraph on n vertices has o(nk) edges.
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3-Uniform Clique Union Lemma Ô⇒ r4(n) = o(n)

Suppose A ⊆ [n] contains no 4-AP.
We have to show that ∣A∣ = o(n).

This will follow, if we construct from A a 3-uniform hypergraph
H(3) = (V,E) satisfying:

∣V ∣ = O(n)
∣E∣ = Ω(n2 ⋅ ∣A∣)
H(3) is a simple clique hypergraph.

Indeed, then the Clique Union Lemma yields ∣E∣ = o(∣V ∣3) = o(n3).

Consequently,

Ω(n2 ⋅ ∣A∣) = ∣E∣ = o(n3)

.

Which implies ∣A∣ = o(n).
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 14



3-Uniform Clique Union Lemma Ô⇒ r4(n) = o(n)

Suppose A ⊆ [n] contains no 4-AP.
We have to show that ∣A∣ = o(n).

This will follow, if we construct from A a 3-uniform hypergraph
H(3) = (V,E) satisfying:

∣V ∣ = O(n)
∣E∣ = Ω(n2 ⋅ ∣A∣)
H(3) is a simple clique hypergraph.

Indeed, then the Clique Union Lemma yields ∣E∣ = o(∣V ∣3) = o(n3).

Consequently,
Ω(n2 ⋅ ∣A∣) = ∣E∣ = o(n3).

Which implies ∣A∣ = o(n).
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Construction of the simple clique hypergraph H(3)

Suppose A ⊆ [n] contains no 4-AP.

We define a hypergraph H(3) = (V,E) with V = X ⋅∪ Y ⋅∪ Z ⋅∪W by:

V ≙ four copies of [−n,n]
E ≙ union of cliques K(3)4 ’s spanned by

vertices x, y, z, and w satisfying

x + y + z +w = 0

and

3x + y − z − 3w = 2a

for some a ∈ A.

X

n

−n
Y

n

−n

Z

−n

n
W

−n

n

xy

z w

∣V ∣ = O(n) and ∣E∣ = Ω(n2 ⋅ ∣A∣)

By construction, each edge of H(3) is in at least one clique.

Fact: Since A contains no 4-AP, every edge of H(3) is in at most one clique.
⇒ H(3) is a 3-uniform, simple clique hypergraph. ◻
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Consequences of the Clique Union Lemma

We have seen:
Clique Union Lemma for 3-uniform hypergraphsÔ⇒ r4(n) = o(n)

For general k:

Clique Union Lemma for k-uniform hypergraphsÔ⇒ rk+1(n) = o(n)

Moreover:
Clique Union Lemma for hypergraphs

Ô⇒ Furstenberg-Katznelson theorem
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A multidimensional version of Szemerédi’s Theorem

Theorem (Furstenberg & Katznelson, 1978)

For every k and d ∈ N we have,
if A ⊆ [n]d contains no regular k × ⋅ ⋅ ⋅ × k-lattice, then ∣A∣ = o(nd).

If ∣A∣ ≥ δn2, then A contains a
3 × 3 regular sublattice.

Solymosi showed:

Clique Union Lemma
⇓

Furstenberg-Katznelson Theorem
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III. Regularity Method for Graphs

Regularity Lemma

Counting and Embedding Lemmas

Method is an important tool in graph theory

Simple application yields Ruzsa-Szemerédi theorem
(clique/triangle union lemma for graphs)
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Szemerédi’s Regularity Lemma

Regularity Lemma (informal version)

Every large graph G can be decomposed into “relatively few,”

mostly random-like (uniform edge distribution) bipartite
subgraphs.

G
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Graph Regularity Method – Basic Definitions

graph G = (V,E)
A, B ⊆ V , non-empty disjoint

Definition: e(A,B) ∶= ∣{{a,b} ∈ E ∶ a ∈ A,b ∈ B}∣

G

d(A,B) = 0.3

A

B

e(A,B) = 30

Definition: The density of A,B is

d(A,B) = e(A,B)
∣A∣∣B∣

∈ [0,1] .
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 20



Random-like Bipartite Graphs

Definition

(A,B) is ε-regular with density d = d(A,B)

if

for all A′ ⊂ A with and for all B′ ⊂ B with

ε has two roles:

sets threshold for ∣A′∣ and ∣B′∣

measures uniformity of edge
distribution

d ± ε

A

B

A′

B′

A′

B′

A′

B′

A′ too small

???

A′

B′

B′ too small

???
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 21



Random-like Bipartite Graphs

Definition

(A,B) is ε-regular with density d = d(A,B) if
for all A′ ⊂ A with ∣A′∣ ≥ ε∣A∣ and for all B′ ⊂ B with ∣B′∣ ≥ ε∣B∣

∣d(A′,B′) − d∣ < ε.

ε has two roles:

sets threshold for ∣A′∣ and ∣B′∣

measures uniformity of edge
distribution

d ± ε

A

B

A′

B′

A′

B′

A′

B′

A′ too small

???

A′

B′

B′ too small

???
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Regular Partition

Definition

A partition V(G) = V1 ∪ ⋅ ⋅ ⋅ ∪ Vt is ε-regular if (Vi,Vj) are ε-regular
for all but at most ε( t

2) pairs i, j and ∣∣Vi∣ − ∣Vj∣∣ ≤ 1 for all pairs i, j.

Regularity Lemma: Every “large” graph admits an ε-regular partition.
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Regularity Lemma

Szemerédi’s Regularity Lemma

∀ε > 0 ∃T0,N0 s.t. every graph G on n ≥ N0 vertices admits an
ε-regular partition V(G) = V1 ∪ ⋅ ⋅ ⋅ ∪ Vt with 1/ε ≤ t ≤ T0.

“Uncontrolled edges”

Edges in irregular pairs:

at most εn2/2.

Edges inside the Vi’s:

at most εn2/2.

Number of “uncontrolled edges”
is at most εn2.
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Szemerédi’s Regularity Lemma

∀ε > 0 ∃T0,N0 s.t. every graph G on n ≥ N0 vertices admits an
ε-regular partition V(G) = V1 ∪ ⋅ ⋅ ⋅ ∪ Vt with 1/ε ≤ t ≤ T0.

“Uncontrolled edges”

Edges in irregular pairs:
at most εn2/2.

Edges inside the Vi’s:
at most εn2/2.

Number of “uncontrolled edges”
is at most εn2.
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Counting Lemma

Triangle Counting Lemma

If A, B, C ⊆ V are disjoint vertex sets such that each pair is
ε-regular with density ≥ d , then the number of triangles is at least

(1 − o(1))d3∣A∣∣B∣∣C∣
where o(1) → 0 as ε→ 0.

ε-regular, d(A,B) ≥ d ε-regular, d(A,C) ≥ d

ε-regular, d(B,C) ≥ d

A

B C

In particular, there is some edge contained in at least two triangles.
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Proof of the Ruzsa-Szemerédi Theorem

Theorem (Ruzsa & Szemerédi)

∀δ > 0 ∃ n0 such that every simple triangle graph G on n ≥ n0 vertices
has less than δn2 edges.

Proof:

● Combined application of Regularity Lemma and Counting Lemma
with the following choice of constants

● Given δ > 0, we choose d and ε such that

ε≪ d ≪ δ

and let n0 be sufficiently large, so that the Regularity Lemma and the
Counting Lemma can be applied.
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 25



Proof of the Ruzsa-Szemerédi Theorem (cont’d)

● Let G = (V,E) be a simple triangle graph with ∣V ∣ = n ≥ n0 and ∣E∣ ≥ δn2.

Observation
Since G is a simple triangle graph:

if less than ∣E∣/3 edges are removed, then a triangle must remain.

● apply Regularity Lemma with ε
● remove “uncontrolled edges”:

● irregular pairs
● within Vi’s

● remove sparse pairs (density < d)

⇒ at most (ε+ d)n2< δn2

3 ≤ ∣E∣3 edges deleted

● Observation ⇒ at least one triangle left
⇒ Counting Lemma applies
⇒ G is not a simple triangle graph ☇
⇒ ∣E∣ < δn2 ◻

G
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 26



Proof of the Ruzsa-Szemerédi Theorem (cont’d)
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 26



Proof of the Ruzsa-Szemerédi Theorem (cont’d)
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Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 26



Proof of the Ruzsa-Szemerédi Theorem (cont’d)
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Removal Lemma

● Proof of the Ruzsa-Szemerédi theorem yields the strengthening:

Theorem (Triangle Removal Lemma)

For every ε > 0 there is some c > 0 and n0 such that any graph G
on n ≥ n0 vertices satisfies:

either one can remove εn2 edges to make it triangle-free
or it contains cn3 triangles.

Theorem (Removal Lemma)

For every ε > 0 and every graph F with ` vertices, there is some c > 0
and n0 such that any graph G on n ≥ n0 vertices satisfies:

either one can remove εn2 edges to make it F-free
or it contains cn` copies of F.

Removal Lemma (informal version)

If G contains only “a few” copies of F, then one can remove “a few”
edges from G to obtain an F-free graph.
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IV. Regularity Method for Hypergraphs



Weak Regularity for 3-Uniform Hypergraphs

A

B

C

H a

b c

A′

B′ C′

Number of edges:

e(A,B,C) = ∣{{a,b, c} ∈ E(H)∶
a ∈ A,b ∈ B, c ∈ C}∣

Density:

d(A,B,C) = e(A,B,C)
∣A∣∣B∣∣C∣

Regularity Lemma: easy to prove (simple extension of graph case)

Counting Lemma: fails to be true (too weak a notion of regularity)

Counterexamples for the Counting Lemma suggest that hyperedge
distribution must be uniform on pairs (and not only on vertices).

Vojtěch Rödl – From Partition Theory to Hypergraph Regularity 29



Weak Regularity for 3-Uniform Hypergraphs

A

B

C

H

a

b c

A′

B′ C′

Number of edges:

e(A,B,C) = ∣{{a,b, c} ∈ E(H)∶
a ∈ A,b ∈ B, c ∈ C}∣

Density:

d(A,B,C) = e(A,B,C)
∣A∣∣B∣∣C∣

Regularity Lemma: easy to prove (simple extension of graph case)

Counting Lemma: fails to be true (too weak a notion of regularity)

Counterexamples for the Counting Lemma suggest that hyperedge
distribution must be uniform on pairs (and not only on vertices).
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Regularity Lemma: easy to prove (simple extension of graph case)

Counting Lemma: fails to be true (too weak a notion of regularity)
For example, for every ε > 0 there exist K(3)4 -free
4-partite 3-uniform hypergraphs with density 1/2−o(1)
and all its 3-partite subhypergraphs being ε-regular.

Counterexamples for the Counting Lemma suggest that hyperedge
distribution must be uniform on pairs (and not only on vertices).
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Regularity of 3-Uniform Hypergraphs Respecting Pairs

V Setup:
● given graph G = (V,EG)

● K3(G) = set of triangles in G
● 3-uniform hypergraph H = (V,EH)
Density with respect to G:

d(H ∣ G) =
∣EH ∩K3(G)∣

∣K3(G)∣

where d(H ∣ G) = 0 if G is triangle-free.

Definition (H is ε-regular with respect to G)

For all subgraphs G′ ⊆ G with ∣K3(G′)∣ ≥ ε∣K3(G)∣ we have
∣d(H ∣ G) − d(H ∣ G′)∣ < ε .
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Regularity Lemma for k-Uniform Hypergraphs
Regularity Lemma for k-uniform hypergraphs H provides a family of
partitions of vertices, pairs, 3-sets, . . . , (k − 1)-sets such that:

Auxiliary structure is regular

The partition classes of 2-sets (pairs) are uniformly distributed
with respect to the partition classes of the 1-sets (vertices).

The partition classes of 3-sets are uniformly distributed with
respect to the partition classes of the 2-sets.

...

The partition classes of (k − 1)-sets are uniformly distributed
with respect to the partition classes of the (k − 2)-sets.

H is regular

Hyperedges of H are uniformly distributed with respect to the
partition classes of the (k − 1)-sets.
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Removal Lemma for hypergraphs

Regularity Method for hypergraphs yields:

Theorem (Clique Union Lemma)

Every k-uniform, simple clique hypergraph on n vertices has o(nk) edges.

Proof generalises and yields the Removal Lemma

Theorem (Removal Lemma for Hypergraphs)

For every ε > 0 and every k-uniform hypergraph F with ` vertices, there is
some c > 0 and n0 such that any hypergraph H on n ≥ n0 vertices satisfies:

either one can remove εnk hyperedges to make it F-free
or it contains cn` copies of F.

Question
Can F be replaced by a (possibly infinite) family F , i.e., either H is close to
containing no F ∈ F or H contains many copies of some F ∈ F?
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V. Generalizations of the Removal Lemma



Removal Lemma for Infinite Families

Conjecture (Erdős, 1983)

∀ε > 0 ∃ c,n0, `, such that every graph G with n ≥ n0 vertices satisfies:

Conjecture ≙ Removal Lemma for infinite family F4 = {F∶ χ(F) ≥ 4}
Bollobás, Erdős, Simonovits, and Szemerédi solved it for F3 in 1978

Fr for any r ≥ 4 was confirmed jointly with Duke in 1985
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Fr for any r ≥ 4 was confirmed jointly with Duke in 1985
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∀ε > 0 ∃ c,n0, `, such that every graph G with n ≥ n0 vertices satisfies:

either G is ε-close to being 3-chromatic

Conjecture ≙ Removal Lemma for infinite family F4 = {F∶ χ(F) ≥ 4}
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∀ε > 0 ∃ c,n0, `, such that every graph G with n ≥ n0 vertices satisfies:

either G is ε-close to being 3-chromatic

Conjecture ≙ Removal Lemma for infinite family F4 = {F∶ χ(F) ≥ 4}
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∀ε > 0 ∃ c,n0, `, such that every graph G with n ≥ n0 vertices satisfies:

either G is ε-close to being F4-free

or G contains cn` copies of some F ∈ F4 with ∣V(F)∣ = `.

Conjecture ≙ Removal Lemma for infinite family F4 = {F∶ χ(F) ≥ 4}
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Removal Lemma for Infinite Families

Theorem (Alon & Shapira, 2005)

Let F be a possibly infinite family of graphs.
∀ε > 0 ∃ c, L, n0 s.t. every graph G on n ≥ n0 vertices satisfies:

either G is ε-close to being F-free (G contains no F ∈ F)

or G contains cn` copies of some F ∈ F with ∣V(F)∣ = ` ≤ L.

Short version
G is ε-far from being F-free⇒G contains “many” copies of a “small” F ∈ F .

F = {F∶ F is r-chromatic} yields result with Duke

Proof is based on iterated applications of the regularity lemma
→ alternative proof by Lovász and Szegedy

hypergraph version was obtained jointly with Schacht (2007)
→ further refinement by Austin and Tao (2010)

Application in Theoretical Computer Science in the area of Property
Testing (introduced by Rubinfeld and Sudan in 1996 and Goldreich,
Goldwasser, and Ron in 1998)
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Open Problem



An Open Problem

Ruzsa-Szemerédi Theorem
∀δ > 0 ∃n0 such that any simple triangle graph G on n ≥ n0 vertices
satisfies e(G) ≤ δn2.

RSz(δ) = smallest n0 which satisfies the theorem for δ

RSz(δ)
???
≤ 2221/δ

2c log2(1/δ) ≤ RSz(δ)2c log2(1/δ) ≤ RSz(δ) ≤ 2222222222222222222222.
. .

2

poly(1/δ)

2c log2(1/δ) ≤ RSz(δ) ≤ 2222222222222.
. .

2
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∀δ > 0 ∃n0 such that any simple triangle graph G on n ≥ n0 vertices
satisfies e(G) ≤ δn2.

RSz(δ) = smallest n0 which satisfies the theorem for δ

Known bounds: Behrend, Fox (2011)

RSz(δ)
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An Open Problem

Ruzsa-Szemerédi Theorem
∀δ > 0 ∃n0 such that any simple triangle graph G on n ≥ n0 vertices
satisfies e(G) ≤ δn2.

RSz(δ) = smallest n0 which satisfies the theorem for δ

Is it true that

RSz(δ)
???
≤ 2221/δ

2c log2(1/δ) ≤ RSz(δ)2c log2(1/δ) ≤ RSz(δ) ≤ 2222222222222222222222.
. .

2

poly(1/δ)

2c log2(1/δ) ≤ RSz(δ) ≤ 2222222222222.
. .

2

C log(1/δ)

Problem
Improve these bounds!
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where the height of the to
wer

is independent of δ?
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Thank you!



Thank you!


