QUASI-RANDOMNESS AND THE REGULARITY
METHOD IN HYPERGRAPHS

VOJTECH RODL
Emory University
Atlanta, GA

Vojtéch Rodl — From Partition Theory to Hypergraph Regularity



© Ramsey Theorems for the Integers




© Ramsey Theorems for the Integers

© Graphs, Hypergraphs and its connection to Szemerédi’s Theorem




© Ramsey Theorems for the Integers

© Graphs, Hypergraphs and its connection to Szemerédi’s Theorem

© Regularity Method for Graphs




© Ramsey Theorems for the Integers
© Graphs, Hypergraphs and its connection to Szemerédi’s Theorem
© Regularity Method for Graphs

© Regularity Method for Hypergraphs and the Removal Lemma

Vojtéch Rodl — From Partition Theory to Hy, ph Regularity



© Ramsey Theorems for the Integers

© Graphs, Hypergraphs and its connection to Szemerédi’s Theorem
© Regularity Method for Graphs

© Regularity Method for Hypergraphs and the Removal Lemma

© Extensions of the Removal Lemma

Vojtéch Rodl — From Partition Theory to Hy ph Regularity



Theorems for the Integers

Uber die Kongruenz = + y = == (mod. p).
Von I Scaur in Berlin.

Im folgenden will ich zeigen, daB der Dicksonsche Satz sich fast
unmittelbar aus einem sehr einfachen Hilfssatz ergibt, der mehr der
Kombinatorik als der Zahlentheorie angehért:

Hilfssats., Verteill man die Zahlen 1, 2, ..., N irgendwie auf
m Zeilen, so miissen, sobald N > m!e wird, in mindestens einer Zeile
swei Zahlen vorkommen, deren Differenz in derselben Zeile enthalten ist.)




Partition Theorems for the Integers

Uber die Kongruenz = + y = == (mod. p).
Von I Scaur in Berlin.

Im folgenden will ich zeigen, daB der Dicksonsche Satz sich fast
unmittelbar aus einem sehr einfachen Hilfssatz ergibt, der mehr der
Kombinatorik als der Zahlentheorie angehért:

Hilfssats., Verteill man die Zahlen 1, 2, ..., N irgendwie auf
m Zeilen, so miissen, sobald N > m!e wird, in mindestens einer Zeile
swei Zahlen vorkommen, deren Differenz in derselben Zeile enthalten ist.)

Combinatorial lemma (I. Schur, 1916)

If n > mle, then any partition/coloring of [n] = {1,...,n} withm
classes/colors yields one class containing a solution of x +y = z.
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Partition Theorems for the Integers

BEWEIS EINER BAUDET’SUHEN VERMUTUNG
VON

BARTEL L. VAN DER WAERDEN
{in Bamburg).

BAuDET hat vermutet dass fiir jedes I gilt:

Behauptung 1 (I). Ist die unendliche Zahlenfolge 1, 2,3, ...
in zwei fremde Klassen eingeteilt, so liegt in einer dieser
Klassen eine arithmetische Progression von | Zahlen.

Ich werdeallgemeiner zeigen, dass fiir jedes lund jedes k gilt:

Behauptung 2 (I, k). Es existiert eine Zahl n=mn(l, k)
mit der folgenden FEigenschaft: Ist die endliche Zahlenfolge
1, 2,...., nin k fremde Klassen eingeteilt, so liegl in einer
dieser Klassen eine arithmetische Progression von | Zahlenl).

Conjecture of Baudet (and Schur)

If the natural numbers are split into two classes, then one class
contains arithmetic progressions with any given number of terms.
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BEWEIS EINER BAUDET’SUHEN VERMUTUNG
VON

BARTEL L. VAN DER WAERDEN
{in Bamburg).

BAuDET hat vermutet dass fiir jedes I gilt:

Behauptung 1 (I). Ist die unendliche Zahlenfolge 1, 2,3, ...
in zwei fremde Klassen eingeteilt, so liegt in einer dieser
Klassen eine arithmetische Progression von | Zahlen.

Ich werdeallgemeiner zeigen, dass fiir jedes lund jedes k gilt:

Behauptung 2 (I, k). Es existiert eine Zahl n=mn(l, k)
mit der folgenden FEigenschaft: Ist die endliche Zahlenfolge
1, 2,...., nin k fremde Klassen eingeteilt, so liegl in einer
dieser Klassen eine arithmetische Progression von | Zahlenl).

van der Waerden’s Theorem 1927

For all integers m > 2 and k > 3 there exists an integer n such that any
coloring of [n] with m colors yields a monochromatic arithmetic
progression with k terms.
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A General Perspective

Question

Which linear equations have such a partition-property?

Examples:

Schur: x + y = z v
van der Waerden: x + y = 2z v (withx#y)
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A General Perspective

Question

Which linear equations have such a partition-property?

Examples:
Schur: x + y = z v
van der Waerden: x + y = 2z v (withx=#y)
but: x + y = 3z thereisa4-coloring of N with
no monochromatic solution
Rado’s Theorem 1933
Characterization of (systems of) linear equations with the partition-property.
,y/ / Studien zur Kombinatorik.
[ 4 %P v Von

Richard Rado in Berlin.
Einleitung.

Diese Arbeit kniipft an einen in letater Zeit viel genannten- kombina-
torischen Satz von van der Waerden?) an, welcher lautet:
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@ What is the size of the largest subset not containing a solution?
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Density Versions

hur:
Partition Theorems: Schur:  x I

y = z V
van der Waerden: x y ve

Questions

@ What is the size of the largest subset not containing a solution?

Density version of Schur’s theorem

e odd numbers contain no solution for Schur’s equation
= there are sets of density 1/2 with no solution

e cvery A € [n] with |A| > [n/2] contains a solution

How about a density version of van der Waerden’s theorem?

Vojtéch

rtition Theory to



ON SOME SEQUENCES OF INTEGERS
PavL Ervods and Pavrn Turin*.

Consider a sequence of integers @; <a,<... <N containing no three
terms for which @;,—a,=@—a, i.e. a sequence containing no three
consecutive members of an arithmetic progression. Such sequences we
call 4 sequences belonging to .V, or simply 4 sequences. We consider
those with the maximum number of elements, and denote by 7 =1+(N)

Question (Erd6s & Turan, 1936)
Set
rr(n) = max{|A|: A ¢ [n] containing no k-AP}.
Is it true that
ri(n)

lim —==0 7

n—>oo n

— From Partition Tt




Erdos-Turan Conjecture

ON SOME SEQUENCES OF INTEGERS
PavL Ervods and Pavrn Turin*.

Consider a sequence of integers @; <a,<... <N containing no three
terms for which @;,—a,=@—a, i.e. a sequence containing no three
consecutive members of an arithmetic progression. Such sequences we
call 4 sequences belonging to .V, or simply 4 sequences. We consider
those with the maximum number of elements, and denote by 7 =1+(N)

Question (Erd6s & Turan, 1936)
Set
rr(n) = max{|A|: A ¢ [n] containing no k-AP}.
Is it true that
ri(n)

lim —==0 7

n—>oo n

Positive answer == van der Waerden’s Theorem
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Bounds for r(n)

Lower Bound
@ Behrend (1946): r3(n) >
in particular

n
exp(cv/logn)

re(n) > r3(n) > n' W

Upper Bounds
@ Roth (1953): r3(n) <

cn
= loglogn

o further improved by Heath-Brown (1987), Szemerédi (1990),
Bourgain (1999,2008), Sanders (2011) and Bloom (2016)

log1 4
(Ogogn)n

r3(n) <c
logn
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Bounds for r(n)

Lower Bound
@ Behrend (1946): r3(n) >
in particular

n
exp(cv/logn)

re(n) > r3(n) > n' W

Upper Bounds

@ Roth (1953): r3(n) < 1ogC1r:)gn

o further improved by Heath-Brown (1987), Szemerédi (1990),
Bourgain (1999,2008), Sanders (2011) and Bloom (2016)

log1 4
(loglogn)*

r3 (I’l) <c
logn

e Szemerédi (1969): r4(n) = o(n)

Szemerédi’s Theorem 1975

For every integer k > 3 we have ri(n) = o(n) .
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Proofs of Szemerédi’s Theorem

Different proofs of Szemerédi’s Theorem have appeared:
@ Combinatorics/Graph Theory (Szemerédi)
— used van der Waerden’s theorem
— introducing quasi-random methods in graph theory
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@ Ergodic Theory (Furstenberg)

— far reaching generalizations (e.g. multidimensional versions)
@ Fourier Analysis (Roth, Gowers)

— led to best numerical bounds
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@ Combinatorics/Graph Theory (Szemerédi)
— used van der Waerden’s theorem
— introducing quasi-random methods in graph theory

@ Ergodic Theory (Furstenberg)
— far reaching generalizations (e.g. multidimensional versions)

@ Fourier Analysis (Roth, Gowers)
— led to best numerical bounds

@ Hypergraph Method

This talk
We will discuss the hypergraph approach here.
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Proofs of Szemerédi’s Theorem

Different proofs of Szemerédi’s Theorem have appeared:

@ Combinatorics/Graph Theory (Szemerédi)
— used van der Waerden’s theorem
— introducing quasi-random methods in graph theory

@ Ergodic Theory (Furstenberg)
— far reaching generalizations (e.g. multidimensional versions)

@ Fourier Analysis (Roth, Gowers)
— led to best numerical bounds

@ Hypergraph Method

This talk
We will discuss the hypergraph approach here.

Remark

Other proofs appeared over the last decade:
e Elek and Szegedy using non-standard analysis
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II. Graphs and hypergraphs



Graphs and Hypergraphs

Definition
A k-uniform hypergraph (k-graph) H®) on V is a pair (V, E), where
@ V is a finite set, called the vertex set and

@ Eis a collection of k-element subsets of V, called the edge set.
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Graphs and Hypergraphs

Definition
A k-uniform hypergraph (k-graph) H®) on V is a pair (V, E), where
@ V is a finite set, called the vertex set and
@ Eis a collection of k-element subsets of V, called the edge set.
k=2

cliques / complete graphs

triangle = K§2) Kiz)
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Graphs and Hypergraphs

Definition
A k-uniform hypergraph (k-graph) H®) on V is a pair (V, E), where
@ V is a finite set, called the vertex set and

@ E is a collection of k-element subsets of V, called the edge set.
k=2

cliques / complete graphs

/N X

triangle = K§2) K iz) Grotzsch graph
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Graphs and Hypergraphs

Definition
A k-uniform hypergraph (k-graph) H®) on V is a pair (V, E), where
@ V is a finite set, called the vertex set and

@ Eis a collection of k-element subsets of V, called the edge set.

k=3
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Simple Triangle Graphs

Definition

A graph G is a simple triangle graph if each edge is in precisely one triangle.
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Simple Triangle Graphs

Definition

A graph G is a simple triangle graph if each edge is in precisely one triangle.

ROTvNv

Question (Brown, Erdés & T. Sés, 1973)

How many edges can a simple triangle graph on n vertices have?
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Simple Triangle Graphs

Definition

A graph G is a simple triangle graph if each edge is in precisely one triangle.

ROTvNv

Theorem (Ruzsa & Szemerédi, 1978)

Every simple triangle graph on n vertices has o(n*) edges.
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Simple Triangle Graphs

Definition

A graph G is a simple triangle graph if each edge is in precisely one triangle.

ROTvNv

Theorem (Ruzsa & Szemerédi, 1978)

Every simple triangle graph on n vertices has o(n*) edges.

Observation (Ruzsa & Szemerédi)

Theorem = Roth’s Theorem (r3(n) = o(n))
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H () s a simple clique hypergraph if each
edge of H®) is in precisely one copy of K,Ek)

+1°
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H () s a simple clique hypergraph if each
edge of H®) is in precisely one copy of K,Ek)

+1°

Question

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H () s a simple clique hypergraph if each
edge of H®) is in precisely one copy of K,Ek)

+1°

Question

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.

Jointly with Frankl we showed
@ Affirmative answer == Szemerédi’s Theorem

e Conjecture holds for k = 3 (which implies r4(n) = o(n))
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H () s a simple clique hypergraph if each
edge of H®) is in precisely one copy of K,Ek)

+1°

Question

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.

Jointly with Frankl we showed
@ Affirmative answer == Szemerédi’s Theorem

e Conjecture holds for k = 3 (which implies r4(n) = o(n))

Clique Union Lemma (Gowers / Nagle, R., Schacht & Skokan, 2006)

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.
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Generalization to Hypergraphs

Definition
A k-uniform hypergraph H () s a simple clique hypergraph if each
edge of H®) is in precisely one copy of K,Ek)

+1°

Question

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.

Jointly with Frankl we showed
o Affirmative answer —= Szemerédi’s Theorem

e Conjecture holds for k = 3 (which implies r4(n) = o(n))

Clique Union Lemma (Gowers / Nagle, R., Schacht & Skokan, 2006)

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.
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3-Uniform Clique Union Lemma = r4(n) = o(n)

Suppose A < [n] contains no 4-AP.
We have to show that |A| = o(n).




3-Uniform Clique Union Lemma = r4(n) = o(n)

Suppose A < [n] contains no 4-AP.
We have to show that |A| = o(n).

This will follow, if we construct from A a 3-uniform hypergraph
H®) = (V. E) satisfying:

e |V|=0(n)

o |E[=Q(n*-|A])

o H® jsa simple clique hypergraph.
Indeed, then the Clique Union Lemma yields |E| = o(|V]*) = o(n?).
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3-Uniform Clique Union Lemma = r4(n) = o(n)

Suppose A < [n] contains no 4-AP.
We have to show that |A| = o(n).

This will follow, if we construct from A a 3-uniform hypergraph
H®) = (V. E) satisfying:

e |V|=0(n)

o |E[=Q(n*-|A])

o H® jsa simple clique hypergraph.
Indeed, then the Clique Union Lemma yields |E| = o(|V]*) = o(n?).

Consequently,
Qn* - |A]) = |E| = o(r?).

Which implies |A| = o(n).
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n] v n -n N
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:
V = four copies of [-n,n] n %

E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:
V = four copies of [-n,n]

E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying

X+y+z+w=0

and
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n]
E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying

x+y+z+w=0
and

3x+y-z-3w=2a

for some a € A.
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Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n]
E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying
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and
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for some a € A.

e |V|=0(n) and |E| = Q(n? - |A|)
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n] n %
E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying

X+y+z+w=0
and

3x+y-z-3w=2a

for some a € A.

o [V|=0(n) and |E| = Q(n* - |A])

@ By construction, each edge of H®® is in at least one clique.

Vojtéch Rodl — From Partition Theory to Hypergraph Regularity



Construction of the simple clique hypergraph H®)

Suppose
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n] n %
E = union of cliques K, f) ’s spanned by
vertices x, y, z, and w satisfying

X+y+z+w=0
and

3x+y-z-3w=2a

for some a € A.

@ |V|=0(n) and |E| = Q(n* - |A|)
@ By construction, each edge of H®® is in at least one clique.

Fact: Since A contains no 4-AP, every edge of H®) is in at most one clique.
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Construction of the simple clique hypergraph H®)

Suppose A ¢ [n] contains no 4-AP.
We define a hypergraph H®) = (V E) with V=X 0 Y UZ U W by:

V = four copies of [-n,n] n %
E = union of cliques K, 53) ’s spanned by
vertices x, y, z, and w satisfying

X+y+z+w=0
and

3x+y-z-3w=2a

for some a € A.

@ |V|=0(n) and |E| = Q(n* - |A|)
@ By construction, each edge of H®® is in at least one clique.

Fact: Since A contains no 4-AP, every edge of H®) is in at most one clique.

= H®) is a 3-uniform, simple clique hypergraph. O
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Consequences of the Clique Union Lemma

We have seen:

Clique Union Lemma for 3-uniform hypergraphs == r4(n) = o(n)
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We have seen:

Clique Union Lemma for 3-uniform hypergraphs == r4(n) = o(n)

For general k:

Clique Union Lemma for k-uniform hypergraphs = ry,1(n) = o(n)
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Consequences of the Clique Union Lemma

We have seen:

Clique Union Lemma for 3-uniform hypergraphs == r4(n) = o(n)

For general k:

Clique Union Lemma for k-uniform hypergraphs = ry,1(n) = o(n)

Moreover:

Clique Union Lemma for hypergraphs
— Furstenberg-Katznelson theorem
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A multidimensional version of Szemerédi’s Theorem

Theorem (Furstenberg & Katznelson, 1978)

For every k and d € N we have,
if A c [n]? contains no regular k x --- x k-lattice, then |A| = o(n?).
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A multidimensional version of Szemerédi’s Theorem

Theorem (Furstenberg & Katznelson, 1978)

For every k and d € N we have,
ifAc [n]d contains no regular k x --- x k-lattice, then |A| = o(nd).
) ° ° ° )
If |A| Z 5” ’ [ I ) [ ] [ ] [ Y ] [ )
[ ] [ ] [ 3 X ) [ ] [ ]
[ ] [ ] [ I ] [ ]
e o ° °
[ ] [ ] [ 3 N ] [ ] [ ]
[ ] [ X ) [ ] [ ] [ ]
[ ] [ N ] [ ) [ ] [ ] [ )
[ N ] [ N ] [ N ]
[ ) [ ] [ ] [ )
[ ] [ ] [ ] [ ] [ )
[ ] [ ] [ ) [ ] [ ] [ I ] [ )
[ ] [ ] [ X ] [ ] [ ]
[ ] [ ] [ ] [ BN I ]
° ° ° ° °
[ ] [ ) [ ] [ N ]
[ ] [ ] [ N ]

ch Rodl — From Partition Theory to H h Regularity



A multidimensional version of Szemerédi’s Theorem

Theorem (Furstenberg & Katznelson, 1978)

For every k and d € N we have,
if A € [n]¢ contains no regular k x

If |A| > 6n?, then A contains a ¢
3 x 3 regular sublattice. °
[ ]
[ ]
[
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A multidimensional version of Szemerédi’s Theorem

Theorem (Furstenberg & Katznelson, 1978)

For every k and d € N we have,
if A c [n]? contains no regular k x --- x k-lattice, then |A| = o(n?).

If |A| > 6n°, then A contains a ¢ : ° ¢ o o ° : ¢ °
3 x 3 regular sublattice. e o eooe o o
T IO) @e @®
T ) o ®
° ™ X W) [ O )
Solymosi showed: ° : ° ° : ot ° : )
e® °® @e
o o [ ) [ J [} [ ]
Clique Union Lemma ° ° e o °
U e o e o o oo °
[ ] [} [ X ] [ J [
Furstenberg-Katznelson Theorem ® @ o @e o
° ° ° ° °
[ J ( ] [ J LN J
) ) [ N J
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@ Regularity Lemma

@ Counting and Embedding Lemmas
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III. Regularity Method for Graphs

@ Regularity Lemma
@ Counting and Embedding Lemmas

@ Method is an important tool in graph theory

e Simple application yields Ruzsa-Szemerédi theorem
(clique/triangle union lemma for graphs)



Szemerédi’s Regularity Lemma

Regularity Lemma (informal version)

Every large graph G can be decomposed into “relatively few,”

mostly random-like (uniform edge distribution) bipartite
subgraphs.
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Szemerédi’s Regularity Lemma

Regularity Lemma (informal version)

Every large graph G can be decomposed into “relatively few,”

mostly random-like (uniform edge distribution) bipartite

-

subgraphs.




Szemerédi’s Regularity Lemma

Regularity Lemma (informal version)

Every large graph G can be decomposed into “relatively few,”

mostly random-like (uniform edge distribution) bipartite
subgraphs.
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Szemerédi’s Regularity Lemma

Regularity Lemma (informal version)

Every large graph G can be decomposed into “relatively few,”

mostly random-like (uniform edge distribution) bipartite
subgraphs.
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Graph Regularity Method — Basic Definitions

e graph G = (V,E)
@ A, B c V, non-empty disjoint

s

Vojtéch Rodl — From Partition Theory to Hypergraph Regularity



Graph Regularity Method — Basic Definitions

e graph G = (V,E)
@ A, B c V, non-empty disjoint
Definition: ¢(A, B) := |{{a,b} € E:acA,b e B}|
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Graph Regularity Method — Basic Definitions

e graph G = (V,E)
@ A, B c V, non-empty disjoint
Definition: ¢(A, B) := |{{a,b} € E:acA,b e B}|

Definition: The density of A, B is

e(A,B)

d(A.B) =
AB) = AlB

€[0,1].
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Graph Regularity Method — Basic Definitions
e graph G = (V,E)

@ A, B c V, non-empty disjoint
Definition: ¢(A, B) := |{{a,b} € E:acA,b e B}|

—

d(A,B) =03
e

Definition: The density of A, B is

e(A,B) ;
s L

d(A,B) =
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B)
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A" c A with |A’| > £|A| and for all B c B with |B’| > ¢|B|

Vojtéch Rodl — From Partition Theory to Hypergraph Regularity



Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A" c A with |A’| > £|A| and for all B c B with |B’| > ¢|B|

d(A",B") —d| < <.
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A" c A with |A’| > £|A| and for all B c B with |B’| > ¢|B|

d(A",B") —d| < <.
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A" c A with |A’| > £|A| and for all B c B with |B’| > ¢|B|

d(A",B") —d| < <.

€ has two roles:
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A’ c A with |A’| > ¢|A| and for all B c B with |B'| > ¢|B|

d(A",B") —d| < <.

~ A e

€ has two roles:
@ sets threshold for |A’| and |B’|
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A’ c A with |A’| > ¢|A| and for all B c B with |B'| > ¢|B|

d(A",B") —d| < <.

€ has two roles:
@ sets threshold for |A’| and |B’|

A’ too small
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A’ c A with |A’| > ¢|A| and for all B c B with |B'| > ¢|B|

d(A",B") —d| < <.

A ] ——a4

€ has two roles:
@ sets threshold for |A’| and |B’|

< B 5B

B’ too small
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Random-like Bipartite Graphs

Definition
(A, B) is e-regular with density d = d(A, B) if
forall A’ c A with |A’| > ¢|A| and for all B c B with |B'| > ¢|B|

d(A",B') —d| < e.

~ A e

€ has two roles:
@ sets threshold for |A’| and |B’|

@ measures uniformity of edge

distribution ‘ﬂ. B
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Regular Partition

Definition
A partition V(G) = VU ---U V, is e-regular if ~ (V;, V;) are e-regular
for all but at most 5(5) pairs i, j and HV,-| - |VJ|| < 1 for all pairs i, j.
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Regular Partition

Definition
A partition V(G) = VU ---U V, is e-regular if ~ (V;, V;) are e-regular
for all but at most 5(5) pairs i, j and HV,-| - |VJ|| < 1 for all pairs i, j.
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Regularity Lemma

Szemerédi’s Regularity Lemma

Ve >0 3Ty, Ny s.t. every graph G on n > Ny vertices admits an
e-regular partition V(G) =V, u---uV, with 1/e <1< T,.
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Regularity Lemma

Szemerédi’s Regularity Lemma

Ve >0 3Ty, Ny s.t. every graph G on n > Ny vertices admits an
e-regular partition V(G) =V u---uV, with 1/e <1< Ty.

“Uncontrolled edges”
e Edges in irregular pairs:
at most en?/2.
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Regularity Lemma

Szemerédi’s Regularity Lemma

Ve >0 3Ty, Ny s.t. every graph G on n > Ny vertices admits an
e-regular partition V(G) =V u---uV, with 1/e <1< Ty.

“Uncontrolled edges”
e Edges in irregular pairs:
at most en?/2.

e Edges inside the V;’s:
at most en’/2.
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Regularity Lemma

Szemerédi’s Regularity Lemma

Ve >0 3Ty, Ny s.t. every graph G on n > Ny vertices admits an
e-regular partition V(G) =V, u---uV, with 1/e <1< T,.

“Uncontrolled edges”
e Edges in irregular pairs:
at most en?/2.

e Edges inside the V;’s:
at most en’/2.

Number of “uncontrolled edges”
is at most en”.
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Counting Lemma

Triangle Counting Lemma

If A, B, C c V are disjoint vertex sets such that each pair is
e-regular with density > d , then the number of triangles is at least

(1-o(1))d’|A||BC]

where o(1) > 0ase — 0.

A

Vojtéch Rodl — From Partition Theory to Hy, ph Regularity



Counting Lemma

Triangle Counting Lemma

If A, B, C c V are disjoint vertex sets such that each pair is
e-regular with density > d , then the number of triangles is at least

(1-o(1))d’|A|Bl|C|
where o(1) > 0ase — 0.

A

e-regular, d(A,B) > d e-regular, d(A,C) > d

B C
e-regular, d(B,C) > d
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Counting Lemma

Triangle Counting Lemma

If A, B, C c V are disjoint vertex sets such that each pair is
e-regular with density > d , then the number of triangles is at least

(1-o(1))d’|A|Bl|C|
where o(1) > 0ase — 0.

e-regular, d(A,B) > d e-regular, d(A,C) >d

e-regular, d(B,C) > d
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Counting Lemma

Triangle Counting Lemma

If A, B, C c V are disjoint vertex sets such that each pair is
e-regular with density > d , then the number of triangles is at least

(1-o(1))d’|A|Bl|C|
where o(1) > 0ase — 0.

A

B c

In particular, there is some edge contained in at least two triangles.
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Proof of the Ruzsa-Szemerédi Theorem

Theorem (Ruzsa & Szemerédi)

V4§ > 0 3 ng such that every simple triangle graph G on n > ny vertices
has less than dn® edges.
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Proof of the Ruzsa-Szemerédi Theorem

Theorem (Ruzsa & Szemerédi)

V4§ > 0 3 ng such that every simple triangle graph G on n > ny vertices
has less than dn® edges.

Proof:

e Combined application of Regularity Lemma and Counting Lemma
with the following choice of constants




Proof of the Ruzsa-Szemerédi Theorem

Theorem (Ruzsa & Szemerédi)

V4§ > 0 3 ng such that every simple triangle graph G on n > ny vertices
has less than dn® edges.

Proof:

e Combined application of Regularity Lemma and Counting Lemma
with the following choice of constants
e Given ¢ > 0, we choose d and ¢ such that

exd<«xd

and let ng be sufficiently large, so that the Regularity Lemma and the
Counting Lemma can be applied.
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.




Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V,E) be a simple triangle graph with |V| = n > ng and |E| > 6n°.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V,E) be a simple triangle graph with |V| = n > ng and |E| > 6n°.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €

e remove “uncontrolled edges”:
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V,E) be a simple triangle graph with |V| = n > ng and |E| > 6n°.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €

e remove “uncontrolled edges”:
e irregular pairs
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V,E) be a simple triangle graph with |V| = n > ng and |E| > 6n°.
Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
e remove “uncontrolled edges”:

e irregular pairs

e within V,’s




Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €

e remove “uncontrolled edges”:
e irregular pairs
e within V,’s
e remove sparse pairs (density < d)
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €

e remove “uncontrolled edges”:
e irregular pairs
e within V,’s
e remove sparse pairs (density < d)

o 1Al

= atmost (e +d)n*< 2%~ < 5

edges deleted
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
e remove “uncontrolled edges”:

e irregular pairs

e within V,’s
e remove sparse pairs (density < d)

on’ |E|
353

e Observation = at least one triangle left

= at most (¢ +d)n*< edges deleted
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
e remove “uncontrolled edges”:

e irregular pairs

e within V,’s
e remove sparse pairs (density < d)

on’ |E|
353

e Observation = at least one triangle left

= at most (¢ +d)n*< edges deleted

= Counting Lemma applies
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Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
e remove “uncontrolled edges”:

e irregular pairs

e within V,’s
e remove sparse pairs (density < d)

on’ |E|
353

e Observation = at least one triangle left

= at most (¢ +d)n*< edges deleted

= Counting Lemma applies

= G is not a simple triangle graph 4




Proof of the Ruzsa-Szemerédi Theorem (cont’d)

e Let G = (V, E) be a simple triangle graph with |V| = n > ng and |E| > 6n>.

Observation
Since G is a simple triangle graph:

@ if less than |E|/3 edges are removed, then a triangle must remain.

e apply Regularity Lemma with €
e remove “uncontrolled edges”:

e irregular pairs

e within V,’s
e remove sparse pairs (density < d)

on’ |E|
353

e Observation = at least one triangle left

= at most (¢ +d)n*< edges deleted

= Counting Lemma applies

= G is not a simple triangle graph 4
= |E| < 6n® O
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e either one can remove en® edges to make it triangle-free




Removal Lemma

¢ Proof of the Ruzsa-Szemerédi theorem yields the strengthening:

Theorem (Triangle Removal Lemma)

For every € > 0 there is some ¢ > 0 and ngy such that any graph G
on n > ng vertices satisfies:

e either one can remove en® edges to make it triangle-free

e or it contains cn’ triangles.




Removal Lemma

¢ Proof of the Ruzsa-Szemerédi theorem yields the strengthening:

Theorem (Triangle Removal Lemma)

For every € > 0 there is some ¢ > 0 and ny such that any graph G
on n > ng vertices satisfies:

e either one can remove en® edges to make it triangle-free

e or it contains cn’ triangles.

Theorem (Removal Lemma)

For every € > 0 and every graph F with { vertices, there is some ¢ > 0
and ng such that any graph G on n > ng vertices satisfies:

e either one can remove en® edges to make it F-free

e or it contains cn® copies of F.
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Removal Lemma

¢ Proof of the Ruzsa-Szemerédi theorem yields the strengthening:

Theorem (Triangle Removal Lemma)

For every € > 0 there is some ¢ > 0 and ny such that any graph G
on n > ng vertices satisfies:

e cither one can remove en’* edges to make it triangle-free

e or it contains cn’ triangles.

Theorem (Removal Lemma)

For every € > 0 and every graph F with { vertices, there is some ¢ > 0
and ng such that any graph G on n > ng vertices satisfies:

e cither one can remove en’* edges to make it F-free

e or it contains cn® copies of F.

Removal Lemma (informal version)

If G contains only “a few” copies of F, then one can [fémove] “a few”
edges from G to obtain an F-free graph.
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I'V. Regularity Method for Hypergraphs



Weak Regularity for 3-Uniform Hypergraphs

Number of edges:
e(A,B,C) =[{{a,b,c} ¢ E(H):
acA,beB,ceC}|
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Weak Regularity for 3-Uniform Hypergraphs

Number of edges:

e(A,B,C) =|{{a,b,c} e E(H):
acA,beB,ceC}|

Density:

e(A,B,C)

d(A,B,C) = —~
(4.5.C) = “alc
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Weak Regularity for 3-Uniform Hypergraphs

Number of edges:

e(A,B,C) =|{{a,b,c} e E(H):
acA,beB,ceC}|

Density:

e(A,B,C)

d(A,B,C) = &2 %)
(4.5.C) = “alc

e-regularity:
Forall A’ c A, B' c B, C' c C with
|A’| > €|Al, |B'| > €|B|, and |C’| > ¢|C]|

|d(AaBa C) - d(AlaBlv C,)l <é
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Weak Regularity for 3-Uniform Hypergraphs

Number of edges:

e(A,B,C) =|{{a,b,c} e E(H):
acA,beB,ceC}|

Density:

e(A,B,C)

d(A,B,C) = &2 %)
(4.5.C) = “alc

e-regularity:
Forall A’ c A, B' c B, C' c C with
|A’| > €|Al, |B'| > €|B|, and |C’| > ¢|C]|

|d(AaBa C) - d(AlaBlv C,)l <é

Regularity Lemma: easy to prove (simple extension of graph case)
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Weak Regularity for 3-Uniform Hypergraphs

Number of edges:
e(A,B,C) =|{{a,b,c} e E(H):
acA,beB,ceC}|
Density:
d(A,B,C) = M
[AllB[|C]

e-regularity:
Forall A’ c A, B' c B, C' c C with
|A’| > €|Al, |B'| > €|B|, and |C’| > ¢|C]|
|d(AaBa C) - d(AlaBlv C,)l <é
Regularity Lemma: easy to prove (simple extension of graph case)

Counting Lemma: fails to be true (too weak a notion of regularity)
For example, for every € > 0 there exist K‘ES)—free
4-partite 3-uniform hypergraphs with density 1/2-0(1)
and all its 3-partite subhypergraphs being e-regular.
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Weak Regularity for 3-Uniform Hypergraphs

Number of edges:

e(A,B,C) =|{{a,b,c} e E(H):
acA,beB,ceC}|

Density:

e(A,B,C)

d(A,B,C) = &2 %)
(4.5.C) = “alc

e-regularity:
Forall A’ c A, B' c B, C' c C with
|A’| > €|Al, |B'| > €|B|, and |C’| > ¢|C]|

|d(AaBa C) - d(AlaBlv Cl)' <é

Regularity Lemma: easy to prove (simple extension of graph case)

Counting Lemma: fails to be true (too weak a notion of regularity)

Counterexamples for the Counting Lemma suggest that hyperedge
distribution must be uniform on pairs (and not only on vertices).
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Regularity of 3-Uniform Hypergraphs Respecting Pairs

v Setup:
e given graph G = (V,Eg)
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v Setup:
e given graph G = (V,Eg)
triangles in G
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v Setup:
e given graph G = (V,Eg)
triangles in G
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Regularity of 3-Uniform Hypergraphs Respecting Pairs

v Setup:
e given graph G = (V,Eg)
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Regularity of 3-Uniform Hypergraphs Respecting Pairs

Setup:
e given graph G = (V,Eg)
IC5(G) = set of triangles in G
e 3-uniform hypergraph H = (V,Ey)

Density with respect to G:

.

K3(G))

where d(H | G) = 0if G is triangle-free.
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Regularity of 3-Uniform Hypergraphs Respecting Pairs

Setup:
e given graph G = (V,Eg)
IC5(G) = set of triangles in G
e 3-uniform hypergraph H = (V,Ey)

Density with respect to G:

11| -

K3(G))

where d(H | G) = 0if G is triangle-free.

Definition (H is e-regular with respect to G)

For all subgraphs G’ ¢ G with |K3(G")| > €|K53(G)| we have
[d(H|G)-d(H|G')| <.
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Regularity Lemma for k-Uniform Hypergraphs

Regularity Lemma for k-uniform hypergraphs H provides a family of
partitions of vertices, pairs, 3-sets, ..., (k— 1)-sets such that:
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Regularity Lemma for k-Uniform Hypergraphs

Regularity Lemma for k-uniform hypergraphs H provides a family of
partitions of vertices, pairs, 3-sets, ..., (k— 1)-sets such that:

Auxiliary structure is regular

@ The partition classes of 2-sets (pairs) are uniformly distributed
with respect to the partition classes of the 1-sets (vertices).
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Regularity Lemma for k-Uniform Hypergraphs

Regularity Lemma for k-uniform hypergraphs H provides a family of
partitions of vertices, pairs, 3-sets, ..., (k— 1)-sets such that:

Auxiliary structure is regular

@ The partition classes of 2-sets (pairs) are uniformly distributed
with respect to the partition classes of the 1-sets (vertices).

@ The partition classes of 3-sets are uniformly distributed with
respect to the partition classes of the 2-sets.
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Regularity Lemma for k-Uniform Hypergraphs

Regularity Lemma for k-uniform hypergraphs H provides a family of
partitions of vertices, pairs, 3-sets, ..., (k— 1)-sets such that:

Auxiliary structure is regular

@ The partition classes of 2-sets (pairs) are uniformly distributed
with respect to the partition classes of the 1-sets (vertices).

@ The partition classes of 3-sets are uniformly distributed with
respect to the partition classes of the 2-sets.

@ The partition classes of (k — 1)-sets are uniformly distributed
with respect to the partition classes of the (k — 2)-sets.

H is regular

Hyperedges of H are uniformly distributed with respect to the
partition classes of the (k — 1)-sets.
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Removal Lemma for hypergraphs

@ Regularity Method for hypergraphs yields:

Theorem (Clique Union Lemma)

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.
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Removal Lemma for hypergraphs

@ Regularity Method for hypergraphs yields:

Theorem (Clique Union Lemma)

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.

@ Proof generalises and yields the Removal Lemma

Theorem (Removal Lemma for Hypergraphs)
For every € > 0 and every k-uniform hypergraph F with € vertices, there is
some ¢ > 0 and ny such that any hypergraph H on n > n vertices satisfies:
@ cither one can remove en* hyperedges to make it F-free
@ or it contains cn’ copies of F.
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Removal Lemma for hypergraphs

@ Regularity Method for hypergraphs yields:

Theorem (Clique Union Lemma)

Every k-uniform, simple clique hypergraph on n vertices has o(n*) edges.

@ Proof generalises and yields the Removal Lemma

Theorem (Removal Lemma for Hypergraphs)

For every € > 0 and every k-uniform hypergraph F with € vertices, there is
some ¢ > 0 and ny such that any hypergraph H on n > n vertices satisfies:
@ cither one can remove en* hyperedges to make it F-free
@ or it contains cn’ copies of F.

Question

Can F be replaced by a (possibly infinite) family F, i.e., either H is close to
containing no F € F or H contains many copies of some F € F?
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V. Generalizations of the Removal Lemma



Removal Lemma for Infinite Families

Problems and Results on Graphs and
Hypergraphs: Similarities and Differences

Paul Erdos

Many papers and also the excellent book of Bollobds, recently appeared on
extremal problems on graphs. Two survey papers of Simonovits are in the
press and Brown, Simonovits and I have several papers, some appeared, some
in the press and some in preparation on this subject.
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Removal Lemma for Infinite Families
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Conjecture (Erdds, 1983)
Ve > 0 3¢, ng, t, such that every graph G with n > ng vertices satisfies:
@ cither G is e-close to being Fy-free

@ or G contains cn® copies of some F € Fy with |V(F)| = £.

Conjecture = Removal Lemma for infinite family Fs = {F: x(F) > 4}

Bollobas, Erdés, Simonovits, and Szemerédi solved it for F3 in 1978

JF, for any r > 4 was confirmed jointly with Duke in 1985
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Removal Lemma for Infinite Families

Theorem (Alon & Shapira, 2005)

Let F be a possibly infinite family of graphs.
Ve >0 3¢ L, ng s.t. every graph G on n > ng vertices satisfies:

@ cither G is e-close to being F-free (G contains no F € F)

@ or G contains cn’ copies of some F € F with |V(F)| = £ < L.

Short version

G is e-far from being F-free= G contains “many” copies of a “small” F' € F.
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Theorem (Alon & Shapira, 2005)

Let F be a possibly infinite family of graphs.
Ve >0 3¢ L, ng s.t. every graph G on n > ng vertices satisfies:

@ cither G is e-close to being F-free (G contains no F € F)

@ or G contains cn’ copies of some F € F with |V(F)| = £ < L.

Short version
G is e-far from being F-free= G contains “many” copies of a “small” F' € F.
@ F ={F: Fis r-chromatic} yields result with Duke

@ Proof is based on iterated applications of the regularity lemma
— alternative proof by Lovasz and Szegedy
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Let F be a possibly infinite family of graphs.
Ve >0 3¢ L, ng s.t. every graph G on n > ng vertices satisfies:

@ cither G is e-close to being F-free (G contains no F € F)

@ or G contains cn’ copies of some F € F with |V(F)| = £ < L.

Short version
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@ Proof is based on iterated applications of the regularity lemma
— alternative proof by Lovasz and Szegedy

@ hypergraph version was obtained jointly with Schacht (2007)
— further refinement by Austin and Tao (2010)
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Removal Lemma for Infinite Families

Theorem (Alon & Shapira, 2005)

Let F be a possibly infinite family of graphs.
Ve >0 3¢ L, ng s.t. every graph G on n > ng vertices satisfies:

@ cither G is e-close to being F-free (G contains no F € F)

@ or G contains cn’ copies of some F € F with |V(F)| = £ < L.

Short version
G is e-far from being F-free= G contains “many” copies of a “small” F' € F.
@ F ={F: F is r-chromatic} yields result with Duke
@ Proof is based on iterated applications of the regularity lemma
— alternative proof by Lovasz and Szegedy
@ hypergraph version was obtained jointly with Schacht (2007)
— further refinement by Austin and Tao (2010)

@ Application in Theoretical Computer Science in the area of Property
Testing (introduced by Rubinfeld and Sudan in 1996 and Goldreich,
Goldwasser, and Ron in 1998)
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An Open Problem

Ruzsa-Szemerédi Theorem

V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢




An Open Problem

Ruzsa-Szemerédi Theorem

V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢

Known bounds: Behrend

2¢log’(1/9) < RSz(5)
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An Open Problem

Ruzsa-Szemerédi Theorem

V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢

Known bounds: Behrend, Ruzsa-Szemerédi (1978)

2¢108%(1/9) < RSz(5) < 22
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An Open Problem

Ruzsa-Szemerédi Theorem

V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢

Known bounds: Behrend, Fox (2011)

20108°(1/9) < RS7(5) < 22
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An Open Problem

Ruzsa-Szemerédi Theorem

V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢

Is it true that

Problem

Improve these bounds!
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An Open Problem

Ruzsa-Szemerédi Theorem
V& >0 3Jngp such that any simple triangle graph G on n > n vertices
satisfies e(G) < dn?.

RSz(9) = smallest ny which satisfies the theorem for ¢

77

RSz(5) < 2%

1/6

er
where the height of the O i independent of §?
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Thank you!



