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1 Introduction

Certain viscoelastic fluids can be described by the classdrb@d type models. This has been
for example shown in our previous publications [3], [5] of.[h these models the viscoelastic
extra stress tensor is computed from a tensorial evolutjoa®on. In contrast to classical New-
tonian fluids, this viscoelastic stress tensor has nonstamg trace. It means that it contains not
only deviatoric, but also spherical part. The aim of the pnépaper is to develop a reformu-
lation of the Odroyd type model, where the deviatoric ancesighl components are computed
separately. It will be shown how such a deviatoric reforrtialaof an Oldroyd model can be
derived and how it can be used.

2 Mathematical model

2.1 Basic conservation laws
Conservation of mass (incompressibility constraint):
divu = 0 (1)
Conservation of momentum:
pu =divT — Vp (2)

Herew stands for the velocity vectos,is densityp is pressure. The stress tensor is denoted by
T.

2.2 Rheological model - classical formulation

The rheological model is based on the Oldroyd-type mode&nofeferred to as théohnson-
Segalmann model. The well known upper-, lower- and co-rotational Makwnodels as well
as the Oldroyd-A and Oldroyd-B models are just special aages of the Johnson-Segalmann
class of models.

Stress tensor consists of the Newtonian (solvent) pdrt and the viscoelastic palt,.

T:T5+Te (3)
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These two stress componefltsand T, are defined as follows.

Ts - 2,usD (4)
oT
T.+ A 5; = 2lueD (5)

The symbolD denotes the symmetric part of the velocity gradient. Thespda} parameters in
this model are the solvent and elastic viscositiggesp.u.. and the relaxation time.

The convected derivative 5;5 in the equation (5) can be chosen from the one-parametric
family of Gordon-Schowalter derivatives given by :

0T, :
< 5 ) =T.—WT,+T.W + DT, + T.D) a€ (—1;1) (6)
Fora = —1, this leads to upper convected derivatize= 0 gives co-rotational (or Jaumann)

derivative and fora = 1 we get the lower convected derivative. The most commonly use
Oldroyd-B (upper convected Maxwell) model is obtaineddes —1.
oT.
ot

2%, 1
t(u-V)T, = ﬁfD—XT6+(WT6—T6W)—a(DTe+TeD) ac (—1;1) (7)

3 Deviatoric reformulation of the model

The elastic stress tensoy, is described by the following evolution equation:

T 1
aﬁte +(u-V) T, = X 2u.D—T.J+(WT,—-T.W)—a (DT, + T.D) a€ (—1;1) (8)

Tr=o TF;EO

If the T. is initialized by the traceless tensor field (e.§. = cD), then only the last term
on the right hand side of (8) will contribute to the(Tr.). The elastic stress tens®g can be
decomposed in its deviatoric (traceless) (&rtand the spherical, diagonal par?.
1
T.=T0+T" where  T® = gTr(Te)I 9)
This decomposition (9) is introduced into the constitutiekation (8). The tensor products on
the right hand side are decomposed in a similar way followlegrule for general tensd:

1

M=M"4+ M= where  M" = gTr(M)I (10)
The terms on the right hand side of (8) should be decompostdl@ass:
(DT, +T.D)=(DTY +T.D)+ (DT* + T*D) (11)
TF;O =2T5'E);rTr=0

The term(DTY 4 TUD) is not traceless and thus it should be further decomposed:

(DTY +TUD) = (DTY +TUD)” + (DTY + TUD)™ (12)

=2(TD)m
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In a similar way (forW being skew-symmetric an@® symmetric) the expressiofWT, —
T.W) can further be simplified:

(WT, - TW) = (WTY - TOW) + (WT? — T*W) = (WT, - T.W)" (13)

. J/

0

The evolution of the deviatoric (traceless) p&ft is then governed by:

g 1
8t€ +(u-V)TD = X 2u.D—-TY]+ (WT, - T W) — (DT, + T.D)" (14)

Using the relations (11), (13) and (12), the equation (1#)kmrewritten into its (almost) final
form:
oTY
ot

1
+(u-V)TD = " 2p.D — TO]+ (WTY — TOW)—a(DTY + TUD)Y — 2aT*D (15)

The equation for the spherical parf is simpler, becaus@aNT, — T.W)= = 0.

oT"
ot

1
+(u V) T8~ T80 (DTZ + TZD)" (16)

=2(TID)m

The decomposed system of tensor equations for the elasigsstan be written as:

g 1
8t€ +(u-V)TD = 3 2u.D — T+ (WTD—TIW)—a(DTP+TYD)Y — 2¢T*D (17)

" 1
€ . " __ _TE _ op)m
5w V) T8 =— T8 —20(T2D) (18)

In this system of equations the stress compondintsaand T® only appear separately. The
separate systems governing their evolution are linked ¢b ether (also to momentum equa-
tions) via the last term on the RHS. It seems we have now tvieentimber of original tensor

equations, but:

e From the system (17) onl§ components (in 3D) need to be computed, while the last
(diagonal) component can be obtained by applying the diefimitr(TY) = 0.

e The equation (18) is in fact only a scalar evolution equatrthe trace ofT.. This is
due to specific structure G given by the definitiol™™® = Tr(T.)I.

The T(T.) plays a role similar to pressure. Based on this observatioeweelastic pressure
variablep, can be defined as:

1 1
™= —p.l = pe=—5T(T)=—3TH(TH) (19)
From (18) follows the evolution equation for elastic pressu

Ope
ot

1 2
+ (V) po=—1p.+ EaTr(TED) (20)
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Finally instead of the original governing system for (6 caments of)T., we end-up with a
system of equations for (5 components ®f) and (1 scalar) equation for elastic pressure
The full new model can be written as

divu = 0 (21)

ou L. -
En +(u-V)u = ;[le(Ts +T2) = V(p+pe) (22)
T, = 2u,D (23)

OTo 1

6; +(u-V)TY = 3 [21.D — T2] + (WT2 —TOW)—a(DTP4TED)" + 2a(p.D) (24)

Ope 1 2a .
BT +(u- V) pe=— \Pe T 5 Tr(TYD) (25)

Conclusions, remarks

It has been demonstrated that it is possible to reformutat©tdroyd type models in such a way
that the deviatoric and spherical components of the vissbiel stress tensor can be computed
separately. The elastic pressure has been introduced as zanable which makes the new
formulation easier to implement. This formulation can befukfor numerical simulations as
well as for mathematical analysis due to its resemblancéeéantathematical description of
compressible fluids flows.

Further work will focus on numerical implementation of tiniewly formulated model and
its comparison with standard formulation.
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