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1 Introduction

Certain viscoelastic fluids can be described by the class of Oldroyd type models. This has been
for example shown in our previous publications [3], [5] or [1]. In these models the viscoelastic
extra stress tensor is computed from a tensorial evolution equation. In contrast to classical New-
tonian fluids, this viscoelastic stress tensor has non-vanishing trace. It means that it contains not
only deviatoric, but also spherical part. The aim of the present paper is to develop a reformu-
lation of the Odroyd type model, where the deviatoric and spherical components are computed
separately. It will be shown how such a deviatoric reformulation of an Oldroyd model can be
derived and how it can be used.

2 Mathematical model

2.1 Basic conservation laws

Conservation of mass (incompressibility constraint):

divu = 0 (1)

Conservation of momentum:
ρu̇ = divT−∇p (2)

Hereu stands for the velocity vector,ρ is density,p is pressure. The stress tensor is denoted by
T.

2.2 Rheological model - classical formulation

The rheological model is based on the Oldroyd-type model often referred to as theJohnson-
Segalmann model. The well known upper-, lower- and co-rotational Maxwell models as well
as the Oldroyd-A and Oldroyd-B models are just special sub-cases of the Johnson-Segalmann
class of models.

Stress tensorT consists of the Newtonian (solvent) partTs and the viscoelastic partTe.

T = Ts + Te (3)
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These two stress componentsTs andTe are defined as follows.

Ts = 2µsD (4)

Te + λ
δTe

δt
= 2µeD (5)

The symbolD denotes the symmetric part of the velocity gradient. The physical parameters in
this model are the solvent and elastic viscositiesµs, resp.µe and the relaxation timeλ.

The convected derivative δTe

δt
in the equation (5) can be chosen from the one-parametric

family of Gordon-Schowalter derivatives given by :
(
δTe

δt

)

a

= Ṫe −WTe + TeW + a(DTe + TeD) a ∈ 〈−1; 1〉 (6)

For a = −1, this leads to upper convected derivative,a = 0 gives co-rotational (or Jaumann)
derivative and fora = 1 we get the lower convected derivative. The most commonly used
Oldroyd-B (upper convected Maxwell) model is obtained fora = −1.

∂Te

∂t
+ (u ·∇) Te =

2µe

λ
D−

1

λ
Te + (WTe −TeW)− a(DTe +TeD) a ∈ 〈−1; 1〉 (7)

3 Deviatoric reformulation of the model

The elastic stress tensorTe is described by the following evolution equation:

∂Te

∂t
+(u·∇) Te =

1

λ
[2µeD−Te]+(WTe − TeW)

︸ ︷︷ ︸

Tr=0

−a (DTe + TeD)
︸ ︷︷ ︸

Tr6=0

a ∈ 〈−1; 1〉 (8)

If the Te is initialized by the traceless tensor field (e.g.Te = cD), then only the last term
on the right hand side of (8) will contribute to the Tr(Te). The elastic stress tensorTe can be
decomposed in its deviatoric (traceless) partT�

e and the spherical, diagonal partT�

e .

Te = T�

e + T�

e where T�

e =
1

3
Tr(Te)I (9)

This decomposition (9) is introduced into the constitutiverelation (8). The tensor products on
the right hand side are decomposed in a similar way followingthe rule for general tensorM:

M = M� +M� where M� =
1

3
Tr(M)I (10)

The terms on the right hand side of (8) should be decomposed asfollows:

(DTe + TeD) = (DT�

e + T�

eD)
︸ ︷︷ ︸

Tr6=0

+ (DT�

e + T�

eD)
︸ ︷︷ ︸

=2T�
e D; Tr=0

(11)

The term(DT�

e + T�

eD) is not traceless and thus it should be further decomposed:

(DT�

e + T�

eD) = (DT�

e + T�

eD)� + (DT�

e + T�

eD)�
︸ ︷︷ ︸

=2(T�
e D)�

(12)
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In a similar way (forW being skew-symmetric andT�

e symmetric) the expression(WTe −
TeW) can further be simplified:

(WTe − TeW) = (WT�

e − T�

eW) + (WT�

e −T�

eW)
︸ ︷︷ ︸

0

= (WTe − TeW)� (13)

The evolution of the deviatoric (traceless) partT�

e is then governed by:

∂T�

e

∂t
+ (u ·∇) T�

e =
1

λ
[2µeD− T�

e ] + (WTe −TeW)� − a(DTe + TeD)� (14)

Using the relations (11), (13) and (12), the equation (14) can be rewritten into its (almost) final
form:

∂T�

e

∂t
+ (u ·∇) T�

e =
1

λ
[2µeD− T�

e ] + (WT�

e −T�

eW)−a(DT�

e + T�

eD)� − 2aT�

eD (15)

The equation for the spherical partT�

e is simpler, because(WTe − TeW)� = 0.

∂T�

e

∂t
+ (u ·∇) T�

e = −
1

λ
T�

e − a (DT�

e + T�

eD)�
︸ ︷︷ ︸

=2(T�
e D)�

(16)

The decomposed system of tensor equations for the elastic stress can be written as:

∂T�

e

∂t
+ (u ·∇) T�

e =
1

λ
[2µeD− T�

e ] + (WT�

e −T�

eW)−a(DT�

e +T�

eD)� − 2aT�

eD (17)

∂T�

e

∂t
+ (u ·∇) T�

e =−
1

λ
T�

e − 2a(T�

eD)� (18)

In this system of equations the stress componentsT�

e andT�

e only appear separately. The
separate systems governing their evolution are linked to each other (also to momentum equa-
tions) via the last term on the RHS. It seems we have now twice the number of original tensor
equations, but:

• From the system (17) only5 components (in 3D) need to be computed, while the last
(diagonal) component can be obtained by applying the definition Tr(T�

e ) = 0.

• The equation (18) is in fact only a scalar evolution equationfor the trace ofTe. This is
due to specific structure ofT�

e given by the definitionT�

e = 1
3
Tr(Te)I.

The Tr(Te) plays a role similar to pressure. Based on this observation anew elastic pressure
variablepe can be defined as:

T�

e = −peI =⇒ pe = −
1

3
Tr(Te) = −

1

3
Tr(T�

e ) (19)

From (18) follows the evolution equation for elastic pressure:

∂pe

∂t
+ (u ·∇) pe = −

1

λ
pe +

2a

3
Tr(T�

eD) (20)
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Finally instead of the original governing system for (6 components of)Te, we end-up with a
system of equations for (5 components of)T�

e and (1 scalar) equation for elastic pressurepe.
The full new model can be written as

divu = 0 (21)
∂u

∂t
+ (u ·∇)u =

1

ρ
[div(Ts + T�

e )−∇(p+ pe)] (22)

Ts = 2µsD (23)
∂T�

e

∂t
+ (u ·∇) T�

e =
1

λ
[2µeD− T�

e ] + (WT�

e −T�

eW)−a(DT�

e +T�

eD)�+ 2a(peD) (24)

∂pe

∂t
+ (u ·∇) pe =−

1

λ
pe +

2a

3
Tr(T�

eD) (25)

Conclusions, remarks

It has been demonstrated that it is possible to reformulate the Oldroyd type models in such a way
that the deviatoric and spherical components of the viscoelastic stress tensor can be computed
separately. The elastic pressure has been introduced as a new variable which makes the new
formulation easier to implement. This formulation can be useful for numerical simulations as
well as for mathematical analysis due to its resemblance to the mathematical description of
compressible fluids flows.

Further work will focus on numerical implementation of thisnewly formulated model and
its comparison with standard formulation.

Acknowledgment

The financial support for the present project was partly provided by theCzech Science Foundation under
the Grant No.201/09/0917, by theGrant Agency of the Czech Technical University in Prague under
the Grant SGS 10/244/OHK2/3T/12 and by the Research PlanMSM 6840770010 of the Ministry of
Education of Czech Republic.

References
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[3] BODNÁR, T. & SEQUEIRA, A.: Numerical Study of the Significance of the Non-
Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Advances
in Mathematical Fluid Mechanics (edited by R. RANNACHER & A. SEQUEIRA), (pp. 83–
104). Springer Verlag (2010).



Colloquium FLUID DYNAMICS 2011
Institute of Thermomechanics AS CR, v.v.i., Prague, October 19 - 21, 2011 p.
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