Arbuskulární mykorrhiza je široce rozšířenou symbiózou mikroskopických hub s kořeny rostlin. Soužití spočívá v oboustranné výměně látek: Houby přináší rostlinám minerální živiny získané z půdy (především fosfor) a na oplátku dostávají organické látky. Je tato symbióza pro partnery výhodná? A jsou houby a rostliny vůči partnerům vybíraví? Článek je zaměřen ekofyziologické aspekty arbuskulární mykorrhizy.
Citovaná a další doporučená literatura
CASIERI, Leonardo, et al. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza, 2013, 23.8: 597-625.
FACELLI, Evelina, et al. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist, 2010, 185.4: 1050-1061.
FELLBAUM, Carl R., et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 2014, 203.2: 646-656.
GARCIA, Kevin, et al. Take a trip through the plant and fungal transportome of mycorrhiza. Trends in plant science, 2016, 21.11: 937-950.
GRACE, E. J., et al. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 2009, 181.4: 938-949.
GRMAN, Emily. Plant species differ in their ability to reduce allocation to non‐beneficial arbuscular mycorrhizal fungi. Ecology, 2012, 93.4: 711-718.
GRYNDLER, Milan, et al. Mykorhizní symbióza: o soužití hub s kořeny rostlin. Academia, 2004.
HAMMER, Edith C., et al. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 2011, 76.2: 236-244.
JAKOBSEN, I.; ROSENDAHL, L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 1990, 115.1: 77-83.
JOHNSON, David; LEAKE, J. R.; READ, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 2002, 34.10: 1521-1524.
JOHNSON, Nancy Collins. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185.3: 631-647.
JOHNSON, Nancy Collins, et al. Mycorrhizal Mediation of Soil. Elsevier, 2016.
JOHNSON, Nancy Collins; GRAHAM, J. H.; SMITH, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. The New Phytologist, 1997, 135.4: 575-585.
JOHNSON, Nancy Collins, et al. Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist, 2015, 205.4: 1473-1484.
JOHNSON, David, et al. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist, 2002, 2: 327-334.
KASCHUK, Glaciela, et al. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 2009, 41.6: 1233-1244.
KIERS, E. Toby, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. science, 2011, 333.6044: 880-882.
KIERS, E. Toby; VAN DER HEIJDEN, Marcel GA. Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology, 2006, 87.7: 1627-1636.
KOCH, Karen E.; JOHNSON, Charles R. Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiology, 1984, 75.1: 26-30.
KOLTAI, Hinanit; KAPULNIK, Yoram (ed.). Arbuscular mycorrhizas: physiology and function. Springer Science & Business Media, 2010.
KONVALINKOVÁ, Tereza; JANSA, Jan. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Frontiers in plant science, 2016, 7: 782.
KONVALINKOVÁ, Tereza, et al. Duration and intensity of shade differentially affects mycorrhizal growth-and phosphorus uptake responses of Medicago truncatula. Frontiers in plant science, 2015, 6: 65.
KONVALINKOVÁ, Tereza, et al. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil, in press, doi:10.1007/s11104-017-3350-6.
KUCEY, R. M. N.; PAUL, E. A. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil biology and biochemistry, 1982, 14.4: 407-412.
LEKBERG, Ylva; HAMMER, Edith Caroline; OLSSON, Pål Axel. Plants as resource islands and storage units–adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology, 2010, 74.2: 336-345.
MOSSE, Barbara. Fructifications of an Endogone species causing endotrophic mycorrhiza in fruit plants. Annals of Botany, 1956, 20.2: 349-362.
MOSSE, Barbara. Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature, 1957, 179.4566: 922-924.
PEARSON, J. N.; JAKOBSEN, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 1993, 124.3: 489-494.
ŘEZÁČOVÁ, Veronika; KONVALINKOVÁ, Tereza; JANSA, Jan. Carbon fluxes in mycorrhizal plants. In: Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer, Cham, 2017. p. 1-21.
SLAVÍKOVÁ, Renata, et al. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27.1: 35-51.
SMITH, Sally E.; READ, David J. Mycorrhizal symbiosis. Academic press, 2008.
SMITH, Sally E.; SMITH, F. Andrew; JAKOBSEN, Iver. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 2004, 162.2: 511-524.
SNELLGROVE, R. C., et al. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular‐arbuscular mycorrhizas. New Phytologist, 1982, 92.1: 75-87.
FRANK, B. On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of AB Frank’s classic paper of 1885). Mycorrhiza, 2005, 15.4: 267-275.
VAN DER HEIJDEN, Marcel GA; HORTON, Thomas R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97.6: 1139-1150.
VOHNÍK, Martin. Wood Wibe Web – rostliny na síti. Živa, 2008, 5: 199-201.
VOSÁTKA, Miroslav. Houbový internet v půdě. Živa, 2002, 5: 203-205.
WALDER, Florian, et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant physiology, 2012, 159.2: 789-797.
WALDER, Florian; VAN DER HEIJDEN, Marcel GA. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature plants, 2015, 1: 15159.
WATTS-WILLIAMS, Stephanie J., et al. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Journal of experimental botany, 2015, 66.13: 4061-4073.
WEREMIJEWICZ, Joanna; JANOS, David P. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytologist, 2013, 198.1: 203-213.
WERNER, Gijsbert DA; KIERS, E. Toby. Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205.4: 1437-1442.
Arbuscular mycorrhiza is a widespread symbiosis between microscopic fungi and plant roots. It consists in a bidirectional exchange of matter – fungi supply plants with mineral nutrients (mainly phosphorus) gained from soil, and receive organic compounds in return. Is the symbiosis beneficial for both partners? Are the plants and fungi selective about their partners? This paper focuses on the ecophysiological aspects of arbuscular mycorrhiza.