Photosynthetica 2019, 57(2):438-445 | DOI: 10.32615/ps.2019.055

Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress

I. NOUAIRI1,, K. JALALI1, F. ZRIBI2, F. BARHOUMI1, K. ZRIBI1, H. MHADHBI1
1 Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, B. P. 901, 2050 Hammam-Lif, Tunisia
2 Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B. P. 901, 2050 Hammam-Lif, Tunisia

Faba bean (Vicia faba L.) seeds were treated with H2O [nonprimed (NP)] or 2% CaCl2 [primed (P)] before germination for 6 h. After seven days, seedlings were exposed to 0 or 50 µM CdCl2 concentrations for three weeks. Under Cd treatment, P plants showed an improvement of gas-exchange characteristics, chlorophyll (Chl) and carotenoids contents as compared to NP plants subjected to Cd stress. Additionally, the values of Chl fluorescence were relatively similar to those of control, implying that no photodamage occurred. Moreover, under 50 µM Cd, the P plants exhibited lesser accumulation of hydrogen peroxide and superoxide radicals in leaves as compared to NP plants. Likewise, results showed that CaCl2-seed pretreatment alleviated adverse effects of Cd on electrolyte leakage. In conclusion, CaCl2 improved photosynthesis attributes of faba bean plants subjected to Cd stress by mitigating the adverse effects of Cd toxicity through a reduced generation of reactive oxygen species.

Keywords: nonphotochemical quenching; photosynthetic apparatus; seed priming; water-use efficiency.

Received: April 18, 2018; Accepted: November 14, 2018; Prepublished online: March 4, 2019; Published: May 16, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
NOUAIRI, I., JALALI, K., ZRIBI, F., BARHOUMI, F., ZRIBI, K., & MHADHBI, H. (2019). Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica57(2), 438-445. doi: 10.32615/ps.2019.055.
Download citation

References

  1. Agami R.A., Mohamed G.F.: Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. - Ecotox. Environ. Safe. 94: 164-171, 2013. Go to original source...
  2. Ahmad I., Naeem M., Khan N.A., Samiullah: Effects of cadmium stress upon activities of antioxidative enzymes, photosynthetic rate, and production of phytochelatins in leaves and chloroplasts of wheat cultivars differing in yield potential. - Photosynthetica 47: 146-151, 2009. Go to original source...
  3. Ali B., Qian P., Jin R. et al.: Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. - Biol. Plantarum 58: 131-138, 2014. Go to original source...
  4. Ammar W.B., Zarrouk M., Nouairi I.: Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves. - Biologia 70: 198-207, 2015. Go to original source...
  5. Antosiewicz D.M., Hennig J.: Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity. - Environ. Pollut. 129: 237-245, 2004. Go to original source...
  6. Bashir H., Qureshi M.I., Ibrahim M.M., Iqbal M.: Chloroplast and photosystems: Impact of cadmium and iron deficiency. - Photosynthetica 53: 321-335, 2015. Go to original source...
  7. Belkhadi A., Hediji H., Abbes Z. et al.: Effects of exogenous salicylic acid pretreatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. - Ecotox. Environ. Safe. 73: 1004-1011, 2010. Go to original source...
  8. Ben Ghnaya A., Charles G., Hourmant A. et al.: Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. - C. R. Biol. 332: 363-370, 2009. Go to original source...
  9. Bilger W., Johnsen T., Schreiber U.: UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. - J. Exp. Bot. 52: 2007-2014, 2001.
  10. Cao F., Liu L., Ibrahim W. et al.: Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa). - Agrotechnology 2: doi: 10.4172/2168-9881.1000107, 2013. Go to original source...
  11. Chaoui A., Mazhoudi S., Habib Ghorbal M., El Ferjani E.: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). - Plant Sci. 127: 139-147, 1997. Go to original source...
  12. Chen X.T., Wang G., Liang Z.C.: Effect of amendments on growth and element uptake of pakchoi in a cadmium, zinc and lead contaminated soil. - Pedosphere 12: 243-250, 2002.
  13. da Silva A.J., do Nascimento C.V.A., da Silva Gouveia-Neto A., da Silva, E.A.: LED-induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. - Water Air Soil Poll. 223: 3527-3533, 2012. Go to original source...
  14. Daud M.K., Ali S., Variath M.T., Zhu S.J.: Differential physio-logical, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. - Chemosphere 93: 2593-2602, 2013. Go to original source...
  15. Daud M.K., Variath M.T., Shafaqat A. et al.: Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. - J. Hazard. Mater. 168: 614-625, 2009. Go to original source...
  16. Delian E., Chira A., Badulescu L., Chira L.: Calcium alleviates stress in plants: Insight into regulatory mechanisms. - AgroLife Sci. J. 3: 19-28, 2014.
  17. Dionisio-Sese M.L., Tobita S.: Antioxidant responses of rice seedlings to salinity stress. - Plant Sci. 135: 1-9, 1998. Go to original source...
  18. Dixit V., Pandey V., Shymar R.: Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azard). - J. Exp. Bot. 52: 1101-1109, 2001. Go to original source...
  19. Dutilleul C., Garmier M., Noctor G. et al.: Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. - Plant Cell 15: 1212-1226, 2003. Go to original source...
  20. Ekmekçi Y., Tanyolaç D., Ayhan B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. - J. Plant Physiol. 165: 600-611, 2008. Go to original source...
  21. Farzadfar S., Zarinkamar F., Modarres-Sanavy S.A., Hojati M.: Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. - Environ. Sci. Pollut. R. 20: 1413-1422, 2013. Go to original source...
  22. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  23. Guimarães F.V.A., de Lacerda C.F., Marques E.C. et al.: Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. - Plant Growth Regul. 65: 55-63, 2011. Go to original source...
  24. Hironari N., Takashi S.: Calcium signaling in plant endosymbiotic organelles: Mechanism and role in physiology. - Mol. Plant 7: 1094-1104, 2014.
  25. Hoagland D.R., Arnon D.I.: The water culture method for growing plants without soil. - In: California Agricultural Experiment Station Circular No. 347. Pp. 39. University of California, Berkeley 1938.
  26. Ismail M.A.: Involvement of Ca2+ in alleviation of Cd2+ toxicity in common bean (Phaseolus vulgaris L.) plants. - Asian J. Bio. Sci. 1: 26-32, 2008. Go to original source...
  27. Jiang T. Zhan X., Xu Y. et al.: Roles of calcium in stress-tolerance of plants and its ecological significance. - Chin. J. Appl. Ecol. 16: 971-976, 2005.
  28. Jiang Y., Huang B.: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. - J. Exp. Bot. 52: 341-349, 2001. Go to original source...
  29. Karadaş C., Kara D.: In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils. - Environ. Sci. Pollut. R. 18: 620-628, 2011. Go to original source...
  30. Khan M.N., Siddiqui M.H., Mohammad F., Naeem M.: Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. - Nitric Oxide 27: 210-218, 2012. Go to original source...
  31. Kinraide T.B.: Three mechanisms for the calcium alleviation of mineral toxicities. - Plant Physiol. 118: 513-520, 1998. Go to original source...
  32. Lechowski Z., Bialczyk J.: Calcium mediated cytokinin action on chlorophyll synthesis in isolated embryo of Scots pine. - Biol. Plantarum 35: 53-62, 1993. Go to original source...
  33. Liang W., Wang M., Ai X.: The role of calcium in regulating photosynthesis and related physiological indexes of cucumber under low light intensity and suboptimal temperature stress. - Sci. Hortic.-Amsterdam 123: 34-38, 2009. Go to original source...
  34. Lichtenthaler K., Welburn A.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. T. 11: 591-592, 1983. Go to original source...
  35. Lwalaba J.L., Zvobgo G., Fu L. et al.: Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. - Ecotox. Environ. Safe. 139: 488-495, 2017. Go to original source...
  36. Methenni K., Ben Abdallah M., Nouairi I. et al.: Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. - Sci. Hortic.-Amsterdam 233: 349-358, 2018.
  37. Miller G., Shulaev V., Mittler R.: Reactive oxygen signaling and abiotic stress. - Physiol. Plantarum 133: 481-489, 2008. Go to original source...
  38. Moradi L., Ehsanzadeh P.: Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. - Photosynthetica 53: 506-518, 2015. Go to original source...
  39. Najeeb U., Jilani G., Ali S. et al.: Insight into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. - J. Hazard. Mater. 186: 565-574, 2011. Go to original source...
  40. Nouairi I., Ben Ammar W., Ben Youssef N. et al.: Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. - Plant Sci. 170: 511-519, 2006. Go to original source...
  41. Nouairi I., Methanni K., Mhadhbi H., Jebara M.: Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress. - Plant Growth Regul. 68: 37-47, 2012.
  42. Olson P.D., Varner J.E.: Hydrogen peroxide and lignification. - Plant J. 4: 887-892, 1993. Go to original source...
  43. Paparella S., Araújo S.S., Rossi G. et al.: Seed priming: state of the art and new perspectives. - Plant Cell Rep. 34: 1281-1293, 2015. Go to original source...
  44. Per T.S., Khan S., Asgher M. et al.: Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress. - Photosynthetica 54: 491-501, 2016. Go to original source...
  45. Prasad M.N.V.: Cadmium toxicity and tolerance in vascular plants. - Environ. Exp. Bot. 35: 525-545, 1995. Go to original source...
  46. Qadir M., Ghafoor A., Murtaza G.: Cadmium concentration in vegetables grown on urban soils irrigated with untreated municipal sewage. - Environ. Dev. Sustain. 2: 13-21, 2000. Go to original source...
  47. Rizwan M., Meunier J.D., Miche H., Keller C.: Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. - J. Hazard. Mater. 209: 326-334, 2012. Go to original source...
  48. Saidi I., Ayouni M., Dhieb A. et al.: Oxidative damages induced by short-term exposure to cadmium in bean plants: Protective role of salicylic acid. - S. Afr. J. Bot. 85: 32-38, 2013. Go to original source...
  49. Sanità di Toppi L., Gremigni P., Pawlik-Skowrońska B. et al.: Response to heavy metals in plants: a molecular approach. - In: Sanità di Toppi L., Pawlik-Skowrońska B. (ed.): Abiotic Stresses in Plants. Pp. 133-156. Springer, Dordrecht 2003.
  50. Schützendübel A., Schwanz P., Terchmann T. et al.: Cadmium induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. - Plant Physiol. 75: 887-898, 2001. Go to original source...
  51. Shi G., Liu C., Cai Q. et al.: Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes. - B. Environ. Contam. Tox. 85: 256-263, 2010. Go to original source...
  52. Siddiqui M.H., Al-Whaibi M.H., Basalah M.O.: Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. - Protoplasma 248: 503-511, 2011. Go to original source...
  53. Siddiqui M.H., Al-Whaibi M.H., Sakran A.M. et al.: Calcium-induced amelioration of boron toxicity in radish. - J. Plant Growth Regul. 32: 61-71, 2013. Go to original source...
  54. Siddiqui M.H., Al-Whaibi M.H., Sakran A.M. et al.: Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. - Int. J. Mol. Sci. 13: 6604-6619, 2012. Go to original source...
  55. Suzuki N.: Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. - Plant Biotechnol. 22: 19-25, 2005. Go to original source...
  56. Tan W., Meng Q.W., Brestic M. et al.: Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. - J. Plant Physiol. 168: 2063-2071, 2011. Go to original source...
  57. Vaculík M., Pavlovič A., Lux A.: Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. - Ecotox. Environ. Safe. 120: 66-73, 2015. Go to original source...
  58. Xing W., Wang W., Liu G.: Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid. - Environ. Toxicol. 25: 103-112, 2010.
  59. Xu C., Li X., Zhang L.: The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. - PLoS ONE 8: doi: 10.1371/journal.pone.0068214, 2013. Go to original source...
  60. Xu D., Wang W., Gao T. et al.: Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. - Conserv. Physiol. 5: doi:10.1093/conphys/cox060, 2017. Go to original source...
  61. Zhang F., Zhang H., Wang G. et al.: Cadmium-induced accumu-lation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. - J. Hazard. Mater. 168: 76-84, 2009. Go to original source...
  62. Zou P., Li K., Liu S. et al.: Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. - Carbohyd. Polym. 126: 62-69, 2015. Go to original source...