Photosynthetica 2018, 56(4):1069-1080 | DOI: 10.1007/s11099-018-0819-3

Photosynthetic, physiological and biochemical events associated with polyethylene glycol-mediated osmotic stress tolerance in taro (Colocasia esculenta L. Schott)

M. R. Sahoo1,2,*, M. Dasgupta1,2, P. C. Kole3, A. Mukherjee4
1 ICAR Research Complex for NEH Region, Lamphelpat, Imphal, Manipur, India
2 University of Tennessee, Knoxville, USA
3 Department of Crop Improvement, Horticulture and Agricultural Botany, Institute of Agriculture, Visva Bharati, Sriniketan, India
4 Regional Centre of Central Tuber Crops Research Institute, Bhubaneswar, India

Six genotypes of taro (Colocasia esculenta L. Schott) were evaluated under in vitro and in vivo polyethylene glycol (PEG-6000)-mediated osmotic stress conditions. A significant variation in growth response was observed among the taro genotypes under in vitro-induced stress conditions. In vivo results indicated a significant effect of osmotic stress on photosynthetic parameters, such as net photosynthetic rate, transpiration rate, stomatal conductance, stomatal resistance, internal CO2 concentration, carboxylation efficiency, and transpiration efficiency on the tested genotypes at the tuberization stage. Lesser variations in photosynthesis and higher accumulation of proline, phenols, and antioxidative enzymes, namely, superoxide dismutase and guaiacol peroxidase, were associated with yield maintenance under osmotic stress conditions. The genotypes DP-89, IGCOL-4, and Ramhipur showed a higher degree of tolerance towards osmotic stress with a minimum variation in the studied parameters. These genotypes could be lines of interest for intensification of breeding strategies to develop drought-tolerant plants.

Keywords: antioxidative enzymes; osmotic stress; photosynthesis; physiology; polyethylene glycol; taro

Received: June 3, 2017; Accepted: October 19, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sahoo, M.R., Dasgupta, M., Kole, P.C., & Mukherjee, A. (2018). Photosynthetic, physiological and biochemical events associated with polyethylene glycol-mediated osmotic stress tolerance in taro (Colocasia esculenta L. Schott). Photosynthetica56(4), 1069-1080. doi: 10.1007/s11099-018-0819-3.
Download citation

References

  1. Albiski F., Najla S., Sanoubar R. et al.: In vitro screening of potato lines for drought tolerance.-Physiol. Mol. Biol. Plants 18: 315-321, 2012.
  2. Anjum S.A., Xie X., Wang L. et al.: Morphological, physiological and biochemical responses of plants to drought stress.-Afr. J. Agric. Res. 6: 2026-2032, 2011.
  3. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-207, 1973. Go to original source...
  4. Biradar R.S., Venkateswaralu T., Hrishi N.: Leaf area estimation in Colocasia.-J. Root Crops. 4: 51-53, 1978.
  5. Blum A.: Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive?-Aust. J. Agric. Res. 56: 1159-1168, 2005. Go to original source...
  6. Blum A.: Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress.-Field Crops Res. 112: 119-123, 2009. Go to original source...
  7. Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  8. Chakraborty U., Pradhan B.: Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation.-Braz. J. Plant Physiol. 24: 117-130, 2012. Go to original source...
  9. Chandra A., Pathak P.S., Bhatt R.K. et al.: Variation in drought tolerance of different Stylosanthes accessions.-Biol. Plantarum 48: 457-460, 2004. Go to original source...
  10. Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought-from genes to the whole plant.-Funct. Plant Biol. 30: 239-264, 2003
  11. Chen K, Arora R.: Priming memory invokes seed stresstolerance.-Environ. Exp. Bot. 94: 33-45, 2013. Go to original source...
  12. Chen K., Fessehaie A., Arora R.: Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea.-Plant Mol. Biol. Rep. 30: 478-487, 2012. Go to original source...
  13. Dasgupta M., Sahoo M.R., Kole P.C. et al.: Evaluation of orangefleshed sweet potato (Ipomoea batatas L.) genotypes for salt tolerance through shoot apex culture under in vitro NaCl mediated salinity stress conditions.-Plant Cell Tiss. Org. 94: 161, 2008. Go to original source...
  14. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management.-Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  15. Flexas J., Bota J., Escalona J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations.-Funct. Plant Biol. 29: 461-471, 2002. Go to original source...
  16. Gharineh M.H., Karmollachaab A.: Effect of silicon on physiological characteristics wheat growth under water-deficit stress induced by PEG.-Int. J. Agron. Plant Prod. 4: 1543-1548, 2013.
  17. Ghorbanli M., Gafarabad M., Amirkian T. et al.: Investigation of proline, total protein, chlorophyll, ascorbate and dehydro-ascorbate changes under drought stress in Akria and Mobil tomato cultivars.-Iran J. Plant Physiol. 3: 651-658, 2012.
  18. Giannopolitis C.N., Ries S.K.: Superoxide dismutases. I. Occurrence in higher plants.-Plant Physiol. 59: 309-314, 1977. Go to original source...
  19. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.-Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  20. Gomez J.M., Jimenez A., Olmos E. et al.: Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.-J. Exp. Bot. 55: 119-130, 2004.
  21. Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments.-Plant Signal Behav. 7: 1456-1466, 2012. Go to original source...
  22. Hussain M., Malik M.A., Farooq M. et al.: Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower.-J. Agron. Crop Sci. 194: 193-199, 2008. Go to original source...
  23. Khanna-Chopra R., Selote D.S.: Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions.-Environ. Exp. Bot. 60: 276-283, 2007. Go to original source...
  24. Kumar R.R., Karajol K., Naik G.R.: Effect of polyethylene glycol induced water stress on physiological and biochemical responses in Pigeonpea (Cajanus cajan L. Mill sp.).-Rec. Res. Sci. Technol. 3: 148-152, 2011.
  25. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.-Nature 227: 680-685, 1970. Go to original source...
  26. Legay S., Lefèvre I., Lamoureux D. et al.: Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.).-Funct. Integr. Genomic. 11: 275-291, 2011. Go to original source...
  27. Levitt J.: Responses of Plants to Environmental Stresses, Vol. II. Water, Radiation, Salt and Others Stresses. Pp. 395-434. Academic Press, New York 1980.
  28. Li X., Liu F.: Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis.-In: Hossain M.A., Wani S.H., Bhattacharjee S. et al. (ed.): Drought Stress Tolerance in Plants, vol. 1. Physiology and Biochemistry. Pp. 17-44. Springer, Basel 2016. Go to original source...
  29. Li X., Topbjerg H.B., Jiang D. et al.: Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage.-Plant Soil 393: 307-318, 2015. Go to original source...
  30. Liu F.L., Jensen C.R., Shahanzari A. et al.: ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying.-Plant Sci. 168: 831-836, 2005. Go to original source...
  31. Luo H.H., Zhang Y.L., Zhang W.F.: Effect of water stress and re watering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch.-Photosynthetica 54: 65-73, 2016. Go to original source...
  32. Mabhaudhi T., Modi A.T., Beletse Y.G.: Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rain shelter.-Agr. Water Manage. 121: 102-112, 2013. Go to original source...
  33. Mabhaudhi T., Modi A.T.: Drought tolerance of selected South African taro (Colocasia esculents L. Schott) landraces.-Exp. Agr. 51: 451-466, 2015. Go to original source...
  34. Mohan M.M., Narayanan S.L., Ibrahim S.M.: Chlorophyll stability index (CSI): its impact on salt tolerance in rice.-Int. Rice Res. Notes 25: 38-39, 2000.
  35. Murashige T., Skoog F.: A revised medium for rapid growth and bioassay with tobacco tissue culture.-Physiol. Plantarum 15: 473-497, 1962. Go to original source...
  36. Muscolo A., Junker A., Klukas C. et al.: Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions.-J. Exp. Bot. 66: 5467-5480, 2015. Go to original source...
  37. Nelson N.: A photometric adaptation of the Somogyi's method for the determination of glucose.-J. Biol. Chem. 153: 375-380, 1944.
  38. Obidiegwu J.E., Bryan G.J., Jones H.G. et al.: Coping with drought: stress and adaptive responses in potato and perspectives for improvement.-Front. Plant Sci. 6: 542, 2015. Go to original source...
  39. Perez N.C.M., Espinosa R.G., Castaneda C.L. et al.: Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress.-Physiol. Mol. Plant P. 60: 185-195, 2002.
  40. Pérez-Clemente R.M., Vives V., Zandalinas S.I. et al.: Biotechnological approaches to study plant responses to stress.-Biomed. Res. Int. 2013: 654120, 2013. Go to original source...
  41. Ramírez D.A., Rolando J.L., Yactayo W. et al.: Improving potato drought tolerance through the induction of long-term water stress memory.-Plant Sci. 238: 26-32, 2015. Go to original source...
  42. Ravi V., Chowdhury S.R.: Physiological response of taro to moisture stress.-J. Root Crops 23: 63-66, 1997.
  43. Roe J.H.: The determination of sugar in blood and spinal fluid with anthrone reagent.-J. Biol. Chem. 212: 335-343, 1955.
  44. Sahoo M.R., Dasgupta M., Kole P.C. et al.: Antioxidative enzymes and isoenzymes analysis of taro genotypes and their implications in Phytophthora blight disease resistance.-Mycopathologia 163: 241-248, 2007. Go to original source...
  45. Sahoo M.R., Dasgupta M., Mukherjee A.: Effect of in vitro and in vivo induction of polyethylene glycol-mediated osmotic stress on hybrid taro (Colocasia esculenta L. Schott.).-Ann. Trop. Res. 28: 1-11, 2006b.
  46. Sahoo M.R., Kole P.C., Dasgupta M. et al.: Screening and selection of Colocasia for leaf blight, drought and salinity.-Curr. Agr. Res. 19: 14-19, 2006a.
  47. Singh D.P.: Water Deficit Stress in Stress Physiology. Pp. 64-79. New Age Publishers, New Delhi 2003.
  48. Sourour A., Afef O., Mounir R. et al.: A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress.-Int. J. Eng. Sci. 6: 1-4, 2017. Go to original source...
  49. Sunitha S., Ravi V., George J. et al.: Aroids and water relations: An overview.-J. Root Crops 39: 10-21, 2013.
  50. Suseela V., Tharayil N., Xing B. et al.: Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra.-Glob. Change Biol. 21: 4177-4195, 2015. Go to original source...
  51. Tombesi S., Nardini A., Frioni T. et al.: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine.-Sci. Rep. 5: 12449, 2015. Go to original source...
  52. Tukey J.W.: Comparing individual means in the analysis of variance.-Biometrics 5: 99-114, 1949. Go to original source...
  53. Urbanek H., Kuzniak-Gebarowska E., Herka K.: Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase.-Acta Physiol. Plant. 13: 43-50, 1991.
  54. Wei L., Wang L., Yang Y. et al.: Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis.-Front. Plant Sci. 30: 458, 2015.
  55. Yue B., Xue W., Xiong L. et al.: Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance.-Genetics 172: 1213-1228, 2006. Go to original source...
  56. Zieslin N., Ben-Zaken R.: Peroxidase activity and presence of phenolic substances in peduncles of rose flowers.-Plant Physiol. Bioch. 31: 239-247, 1993.