Photosynthetica 2018, 56(4):1268-1277 | DOI: 10.1007/s11099-018-0841-5

Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures

K. Chekanov1,2,*, S. Vasilieva1, A. Solovchenko1, E. Lobakova1
1 Biological Faculty, Lomonosov Moscow State University, Moscow GSP-1, Russia
2 Centre for Humanities Research and Technology, National Research Nuclear University MEPhi, Moscow, Russia

The microalga Haematococcus pluvialis is a biotechnologically important microorganism producing a ketocarotenoid astaxanthin. Haematococcus exists either as metabolically active vegetative cells with a high chlorophyll content or astaxanthin-rich haematocysts (aplanospores). This microalga featuring outstanding tolerance to a wide range of adverse conditions is a highly suitable model for studies of freezing tolerance in phototrophs. The retention of H. pluvialis cell viability after freezing-thawing is ascribed to elevated antioxidant enzyme activity and high ketocarotenoid content. However, we report that only haematocysts characterized by a lower photosynthetic activity were resistant to freezing-thawing even without cryoprotectant addition. The key factors of haematocyst freezing tolerance were assumed to be a low water content, rigid cell walls, reduction of the membranous structures, photosynthesis downregulation, and low chlorophyll content. Collectively, viability of Haematoccus after freezing-thawing can be improved by forcing the transition of vegetative cells to freeze-tolerant haematocysts before freezing.

Keywords: cold stress; Haematococcys pluvialis; stress tolerance

Received: May 31, 2017; Accepted: November 15, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Chekanov, K., Vasilieva, S., Solovchenko, A., & Lobakova, E. (2018). Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures. Photosynthetica56(4), 1268-1277. doi: 10.1007/s11099-018-0841-5.
Download citation

Supplementary files

Download filephs-201804-0032_S1.pdf

File size: 175.89 kB

References

  1. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions.-Plant Physiol. 141: 391-396, 2006. Go to original source...
  2. Benson E.: Cryopreservation of phytodiversity: a critical appraisal of theory & practice.-Crit. Rev. Plant Sci. 27: 141-219, 2008. Go to original source...
  3. Best B.: Cryoprotectant toxicity: Facts, issues, and questions.-Rejuv. Res. 18: 422-436, 2015. Go to original source...
  4. Bodas K., Brennig C., Diller K., Brand J.: Cryopreservation of blue-green and eukaryotic algae in the culture collection at the University of Texas at Austin.-Cryo-Lett. 16: 267-274, 1995.
  5. Boussiba S., Vonshak A.: Astaxanthin accumulation in the green alga Haematococcus pluvialis.-Plant Cell Physiol. 32: 1077-1082, 1991. Go to original source...
  6. Boussiba S.: Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response.-Physiol. Plantarum 108: 111-117, 2000. Go to original source...
  7. Brand J.J., Diller K.R.: Application and theory of algal cryopreservation.-Nova Hedwigia 79: 175-189, 2004. Go to original source...
  8. Bui T.V., Ross I.L., Jakob G., Hankamer B.: Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae.-PLoS ONE 8: e78668, 2013. Go to original source...
  9. Cañavate J.P., Lubian L M.: Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae.-Mar. Biol. 124: 325-334, 1995. Go to original source...
  10. Cañavate J., Lubian L.: Tolerance of six marine microalgae to the cryoprotectants dimethyl sulfoxide and methanol.-J. Phycol. 30: 559-565, 1994. Go to original source...
  11. Chekanov K.A., Solovchenko A.E.: Possibilities and limitations of non-destructive monitoring of the unicellular green microalgae (Chlorophyta) in the course of balanced growth.-Russ. J. Plant Physl+ 62: 270-278, 2015.
  12. Chekanov K., Lobakova E., Selyakh I. et al.: Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia).-Mar. Drugs. 12: 4504-4520, 2014. Go to original source...
  13. Chekanov K., Lukyanov A., Boussiba S. et al.: Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back.-Photosynth. Res. 128: 313-323, 2016. Go to original source...
  14. Chekanov K., Schastnaya E., Solovchenko A., Lobakova E.: Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis.-J. Photoch. Photobio. B 171: 58-66, 2017. Go to original source...
  15. Day J.G., Watanabe M.M., Morris G.J. et al.: Long-term viability of preserved eukaryotic algae.-J. Appl. Phycol. 9: 121-127, 1997. Go to original source...
  16. Day J., Brand J.: Cryopreservation methods for maintaining cultures.-In: Andersen R.A. (ed.): Algal Culturing Techniques. Pp. 165-187. Academic Press, New York 2005. Go to original source...
  17. Day J.G., DeVille M.M.: Cryopreservation of Algae. Pp. 81-89. Humana Press Inc., Totowa 1995. Go to original source...
  18. Fleck R.A., Benson E.E., Bremner D.H., Day J.G.: Studies of free radical-mediated cryoinjury in the unicellular green alga Euglena gracilis using a non-destructive hydroxyl radical assay: a novel approach for developing protistan cryopreservation strategies.-Free Radic Res. 32: 157-170, 2000. Go to original source...
  19. Fleck R., Benson E., Bremner D., Day J.: A comparative study of antioxidant protection in cryopreserved unicellular algae Euglena gracilis and Haematococcus pluvialis.-Cryo-Lett. 24: 213-228, 2003.
  20. Goltsev V., Kalaji M.H., Paunova M. et al.: Using a variable chlorophyll fluorescence for evaluation of physiological state photosynthetic apparatus plants.-Russ. J. Plant Physl+ 63: 1-28, 2016.
  21. Hagen C., Siegmund S., Braune W.: Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Vovocales, Chlorophyta) during aplanospore formation.-Eur. J. Phycol. 37: 217-226, 2008.
  22. Han D., Li Y., Hu Q.: Astaxanthin in microalgae: pathways, functions and biotechnological implications.-Algae 28: 131-147, 2013. Go to original source...
  23. Harding K., Muller J., Lorenz M. et al.: Deployment of the encapsulation-dehydration protocol to cryopreserve microalgae held at the Sammlung von Algenkulturen, Universität Gottingen, Germany.-Cryo-Lett. 29: 15-20, 2008.
  24. Jackson M., Mantsch H.H.: Beware of proteins in DMSO.-BBA-Protein Struct. M. 1078: 231-235, 1991.
  25. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel.-Photosynth. Res. 132: 13-66, 2016.
  26. Klochkova T.A., Kwak M.S., Han J.W. et al.: Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard).-Algae 28: 185-192, 2013. Go to original source...
  27. Morris G.J.: Cryopreservation of 250 strains of Chlorococcales by the method of two-step cooling.-Brit. Phycol. J. 13: 15-24, 1978. Go to original source...
  28. Morschett H., Reich, S., Wiechert W., Oldiges M.: Simplified cryopreservation of the microalga Chlorella vulgaris integrating a novel concept for cell viability estimation.-Eng. Life Sci. 16: 36-44, 2016. Go to original source...
  29. Notman R., Noro M., O'Malley B., Anwar J.: Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes.-J. Am. Chem. Soc. 128: 13982-13983, 2006. Go to original source...
  30. Pal D., Khozin-Goldberg I., Cohen Z., Boussiba S.: The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.-J. Appl. Microbiol. Biotechnol. 90: 1429-1441, 2011. Go to original source...
  31. Peled E., Leu S., Zarka A. et al.: Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae).-Lipids 46: 851-861, 2011. Go to original source...
  32. Piasecki B.P., Diller K.R., Brand J.J.: Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density.-Cryobiology 58: 103-109, 2009. Go to original source...
  33. Pouneva I.: Evaluation of algal culture viability and physiological state by fluorescent microscopic methods.-Bulg. J. Plant Physiol. 23: 67-76, 1997.
  34. Saadaoui I., Al Emadi M., Bounnit T. et al.: Cryopreservation of microalgae from desert environments of Qatar.-J. Appl. Phycol. 28: 2233-2240, 2016. Go to original source...
  35. Singh S.M., Elster J.: Cyanobacteria in Antarctic lake environments.-In.: Seckbach J.: Algae and Cyanobacteria in Extreme Environments. Pp. 303-320. Springer, Dordrecht 2007. Go to original source...
  36. Solovchenko A.E.: Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell.-Photosynth. Res. 125: 437-449, 2015. Go to original source...
  37. Solovchenko A., Merzlyak M.N., Khozin-Goldberg I. et al.: Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in ?5 desaturase by nitrogen starvation and high light.-J. Phycol. 46: 763-772, 2010 Go to original source...
  38. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G.: Purification and properties of unicellular blue-green algae (order Chroococcales).-Bacteriol. Rev. 35: 171-205, 1971.
  39. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.-In: Yunus M, Pathre U, Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  40. Wang S.B., Chen F., Sommerfeld M., Hu Q.: Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae).-Planta 220: 17-29, 2004 Go to original source...