Photosynthetica 2016, 54(3):430-437 | DOI: 10.1007/s11099-015-0181-7

Photosynthetic responses of the low intertidal macroalga Sargassum fusiforme (Sargassaceae) to saline stress

S. Gao1,2, L. Huan1,2, X. P. Lu1,2, W. H. Jin1, X. L. Wang1,2, M. J. Wu3, G. C. Wang1,2,*
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
3 Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environment Science, Wenzhou University, Wenzhou, China

Sargassum fusiforme, a species of brown seaweed with economic importance, inhabits lower intertidal zones where algae are often exposed to various stresses. In this study, changes in the photosynthetic performance of S. fusiforme under saline stress were investigated. The PSII performance in S. fusiforme significantly improved, when the thalli were exposed to 0% salinity, and remained high with prolonging treatment time. In contrast, the PSII activity declined considerably under salinities of 4.5 and 6%. The PSI activity did not change remarkably under saline stress, thus demonstrating higher tolerance to saline stress than PSII. In addition, the PSI activity could be also restored after saline treatments, when PSII was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. It might be as a result of changes in the NAD(P)H content in the thalli under saline stress. Our results suggested that PSI was much more tolerant to different saline stress than PSII in S. fusiforme. We demonstrated that S. fusiforme was much more tolerant to hyposaline than to hypersaline stress.

Keywords: chlorophyll fluorescence; chrysolaminarin; electron transport rate; nonphotochemical quenching; reductant

Received: June 30, 2015; Accepted: October 20, 2015; Published: September 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gao, S., Huan, L., Lu, X.P., Jin, W.H., Wang, X.L., Wu, M.J., & Wang, G.C. (2016). Photosynthetic responses of the low intertidal macroalga Sargassum fusiforme (Sargassaceae) to saline stress. Photosynthetica54(3), 430-437. doi: 10.1007/s11099-015-0181-7.
Download citation

References

  1. Aguilera J., Bischof K., Karsten U. et al.: Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress.-Mar. Biol. 140: 1087-1095, 2002.
  2. Allakhverdiev S., Sakamoto A., Nishiyama Y. et al.: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.-Plant Physiol. 123: 1047-1056, 2000. Go to original source...
  3. Alric J.: Cyclic electron flow around photosystem I in unicellular green algae.-Photosynth. Res. 106: 47-56, 2010. Go to original source...
  4. Azzabi G., Pinnola A., Betterle N. et al.: Enhancement of nonphotochemical quenching in the bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.-Plant Cell Physiol. 53: 1815-1825, 2012.
  5. Beattie A., Hirst E., Percival E.: Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae.-Biochem. J. 79: 531-537, 1961. Go to original source...
  6. Brányiková I., Maršálková B., Doucha J. et al.: Microalgae-novel highly efficient starch producers.-Biotechnol. Bioeng. 108: 766-776, 2011. Go to original source...
  7. Bräutigam K., Dietzel L., Kleine T. et al.: Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.-Plant Cell 21: 2715-2732, 2009. Go to original source...
  8. Bukhov N., Carpentier R.: Alternative photosystem I-driven electron transport routes: mechanisms and fuction.-Photosynth. Res. 82: 17-33, 2004. Go to original source...
  9. Chen H., Chen S., Jiang J.: Effect of Ca2+ channel block on glycerol metabolism in Dunaliella salina under hypoosmotic and hyperosmotic stresses.-PloS ONE 6: e28613, 2011. Go to original source...
  10. Dring M.: Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism.-Adv. Bot. Res. 43: 175-207, 2005. Go to original source...
  11. Gao S., Niu J., Chen W. et al.: The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration.-Photosynth. Res. 116: 45-54, 2013. Go to original source...
  12. Gao S., Shen S., Wang G. et al.: PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions.-Plant Cell Physiol. 52: 885-893, 2011. Go to original source...
  13. Gao S., Wang G.: The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta).-J. Exp. Bot. 63: 4349-4358, 2012. Go to original source...
  14. Gao S., Zheng Z., Gu W. et al.: Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than Photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).-Physiol. Plantarum 152: 380-388, 2014. Go to original source...
  15. Genty B., Briantais J., Baker N.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  16. Golding A., Johnson G.: Down-regulation of linear and activation of cyclic electron transport during drought.-Planta 218: 107-114, 2003. Go to original source...
  17. Harker M., Berkaloff C., Lemoine Y. et al.: Effects of high light and desiccation on the operation of the xanthophyll cycle in two marine brown algae.-Eur. J. Phycol. 34: 35-42, 1999. Go to original source...
  18. Huan L., Xie X., Zheng Z. et al.: Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga.-Plant Cell Physiol. 55: 1395-1403, 2014 Go to original source...
  19. Huang W., Zhang S., Cao K.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII.-Plant Cell Physiol. 51: 1992-1928, 2010.
  20. Hwang E., Park C., Sohn C.: Culture condition on the early growth of Hizikia fusiformis (Phaeophyta).-Aquaculture 10: 199-211, 1997.
  21. Johnson M., Ruban A.: Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.-Plant J. 61: 283-289, 2010. Go to original source...
  22. Johnson X., Alric J.: Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii.-J. Biol. Chem. 287: 26445-26452, 2012. Go to original source...
  23. Klughammer C., Schreiber U.: An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm.-Planta 192: 261-268, 1994. Go to original source...
  24. Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PSI.-PAM Application Notes 1: 11-14, 2008.
  25. Liu W., Ming Y., Li P. et al.: Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.-Plant Physiol. Bioch. 54: 43-48, 2012. Go to original source...
  26. Matsumura H., Miyachi S.: Cycling assay for nicotinamide adenine dinucleotides.-In: San Pietro A. (ed.): Methods in Enzymology. Pp. 465-470. Academic Press, New York 1983. Go to original source...
  27. Maxwell K., Johnson G.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  28. Murchie E., Niyogi K.: Manipulation of photoprotection to improve plant photosynthesis.-Plant Physiol. 155: 86-92, 2011. Go to original source...
  29. Niyogi K., Truong T.: Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.-Curr. Opin. Plant Biol. 16: 307-314, 2013.
  30. Pang S., Chen L., Zhuang D. et al.: Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: enhanced seedling production in tumbled culture.-Aquaculture 245: 321-329, 2005. Go to original source...
  31. Pang S., Shan T., Zhang Z. et al.: Cultivation of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura: mass production of zygote-derived seedlings under commercial cultivation conditions, a case study experience.-Aquac. Res. 39: 1408-1415, 2008. Go to original source...
  32. Pang S., Zhang Z., Zhao H. et al.: Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement.-J. Appl. Phycol. 19: 557-565, 2007. Go to original source...
  33. Parida A., Da A.: Salt tolerance and salinity effects on plants: a review.-Ecotox. Environ. Safe. 60: 324-349, 2005. Go to original source...
  34. Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes.-Trends Plant Sci. 8: 33-41, 2003. Go to original source...
  35. Sánchez F., Manzanares M., de Andres E. et al.: Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress.-Field Crop. Res. 59: 225-235, 1998. Go to original source...
  36. Stiger V., Horiguchi T., Yoshida T. et al.: Phylogenetic relationships within the genus Sargassum (Fucales, Phaeophyceae), inferred from ITS-2 nrDNA, with an emphasis on the taxonomic subdivision of the genus.-Phycol. Res. 51: 1-10, 2003. Go to original source...
  37. Tokutsu R., Minagawa J.: Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.-P. Natl. Acad. Sci. USA 110: 10016-10021, 2013. Go to original source...
  38. Tseng C.: [Flora algarum marinarum sinicarum. Tomus III Phaeophyta, No II. Fucales.] Pp. 32-33. Science Press, Beijing 2000.[In Chinese]
  39. Zou D.: Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta).-Aquaculture 250: 726-735, 2005. Go to original source...
  40. Zou D., Gao K.: Photosynthetic characteristics of the economic brown seaweed Hizikia fusiforme (Sargassaceae, Phaeophyta), with special reference to its "leaf" and receptacle.-J. Appl. Phycol. 17: 255-259, 2005. Go to original source...
  41. Zou D., Gao K.: Photosynthetic acclimation to different light levels in the brown marine macroalga, Hizikia fusiformis (Sargassaceae, Phaeophyta).-J. Appl. Phycol. 22: 395-404, 2010. Go to original source...
  42. Zou D., Gao K., Ruan Z.: Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China.-J. Appl. Phycol. 18: 195-201, 2006. Go to original source...
  43. Zou D., Liu S., Du H. et al.: Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) cultured at two different temperatures.-J. Appl. Phycol. 24: 1321-1327, 2012. Go to original source...