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Abstract. In this article we study a system of nonlinear PDEs modelling the electrokinetics of a

nematic electrolyte material consisting of various ions species contained in a nematic liquid crystal.
The evolution is described by a system coupling a Nernst-Planck system for the ions concen-

trations with a Maxwell’s equation of electrostatics governing the evolution of the electrostatic

potential, a Navier-Stokes equation for the velocity field, and a non-smooth Allen-Cahn type
equation for the nematic director field.

We focus on the two-species case and prove apriori estimates that provide a weak sequential
stability result, the main step towards proving the existence of weak solutions.

1. Introduction. In this paper we consider a version of the system derived in [2, (2.51)-(2.55)]
describing the electrokinetics of a nematic electrolyte that consists of ions that diffuse and advect
in a nematic liquid crystal environment.

The system can be written in terms of the following variables:
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• the vector n modelling the local orientation of the nematic liquid crystal molecules,
• the macroscopic velocity v of the liquid crystal molecules,
• the pressure p resulting from the incompressibility constraint on the fluid,
• the electrostatic potential Φ,
• the concentrations ck, k = 1, . . . , N , with valences zk ∈ {−1, 1}, of the families of charged ions

present in the liquid crystal.

Actually, we consider a modified version of the system in [2], assuming certain simplifications com-
monly used in the mathematical literature on liquid crystals. More specifically we take equal elastic
constants in the Oseen-Frank energy and use a Ginzburg-Landau configuration potential F of sin-
gular type (see below for more details) in order to avoid introducing the unit length constraint
(cf. equation (2.56) of [2]) on n (and thus we can correspondingly drop the related Lagrange multi-
plier term λn in the system in [2]). Furthermore neglecting body forces and inertial effects acting
on the director field, we can write the resulting PDE system as follows:

∂ck
∂t

+ v · ∇ck =
1

kBθ
div (ckDk∇µk) , for k = 1, . . . , N, (1.1)

−div(ε0ε(n)∇Φ) =
N∑
k=1

qzkck, (1.2)

∂v

∂t
+ (v · ∇)v +∇p = −K div(∇n�∇n) + div σ,

+ ε0 div
(
(∇Φ⊗∇Φ)ε(n)

)
, (1.3)

div v = 0, (1.4)

γ1(nt + v · ∇n− Ω(v)n) + γ2D(v)n = K∆n+ ε0εa (∇Φ⊗∇Φ)n− ∂F , (1.5)

where µk are the electrochemical potentials of the ions associated to the various ions species ck,
given by

µk := kBθ(ln(ck) + 1) + qzkΦ, (1.6)

kB > 0 denotes the Boltzmann constant, θ > 0 stands for the absolute temperature, and q denotes
the elementary charge.

Moreover, we have indicated by

D(v) :=
1

2
(∇v +∇vt) and Ω(v) :=

1

2
(∇v −∇vt) (1.7)

the symmetric and antisymmetric parts of the velocity gradient. The diffusion operator in (1.2) is
ruled by the matrix

ε(n) := ε⊥Id + εan⊗ n, (1.8)

with constants ε⊥ > 0 and εa ≥ 0, Id denoting the identity matrix. Here εa = ε|| − ε⊥, where
ε|| and ε⊥ denote the electric permittivity when the electric field E = ∇Φ is parallel, respectively,
perpendicular to n.

The constant ε0 > 0 stands for the vacuum dielectric permeability. The matrices Dk are positive
definite, i.e.,

(Dkξ) · ξ > α|ξ|2 (1.9)

for some α > 0 and all k = 1, . . . , N and ξ ∈ R3. In the above we have denoted by ∇n � ∇n the
3× 3 matrix whose (i, j)-component is nk,ink,j (here and in the sequel we assume summation over
repeated indices). As customary, for a, b ∈ R3 we denote as a⊗ b the 3× 3 matrix with component
(i, j) given by aibj . We will further assume that the system is non-dimensionalized, so the constants
are dimensionless (this can be achieved similarly as in Section 3.2 in [2]).
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The Nernst-Planck type equations (1.1) correspond to the continuity equation for ions with the
electric potential Φ satisfying the Maxwell’s equation of electrostatics (1.2).

The Navier-Stokes equations (1.3), with the incompressibility constraint (1.4), rule the evolution
of the liquid crystal flow. Note the Korteweg forces on the right-hand side being induced by the the
director field n and the effects of the electric field, respectively. As in [15], we assume for the total
stress tensor the following general expression:

σ = α1(D(v)n · n)n⊗ n+ α2n̊⊗ n+ α3n⊗ n̊+ α4D(v) + α5D(v)n⊗ n+ α6n⊗D(v)n, (1.10)

where we have denoted n̊ := ∂tn + v · ∇n − Ω(v)n the Lie derivative of n. Here the term α4D(v)
represents the classical Newtonian stress tensor, while the other terms represent the additional stress
produced by the interaction of the anisotropic liquid crystal molecules, see [8, 9].

As mentioned above, we avoid to insert the unit length constraint in (1.5) and instead require
|n| ≤ 1, in the spirit of the the variable length model proposed by J. L. Ericksen in [10]. Indeed,
following an approach commonly used in the context of phase-transition models, we enforce the
property |n| ≤ 1 by means of the singular potential F . Namely, we assume F : R3 → [0,+∞] be
a convex and lower semicontinuous function whose effective domain (i.e., the set where it attains
finite values) is assumed to coincide with the closed unit ball B1 of R3, with a reference choice being
given by

F (n) =
1

2
F (|n|2), (1.11)

where F is convex and has the interval (−∞, 1] as an effective domain. We will actually choose
F (r) = (1− r) log(1− r), an expression mutuated from the Cahn-Hilliard logarithmic potential, but
we point out that more general choices may be allowed.

Such an idea was introduced by J.L. Ericksen in [10] in order to enforce the physicality of a scalar
order parameter and has already been applied to liquid crystal models in a number of papers (cf.,
e.g., [11, 12]) and has the advantage that as soon as we have proved existence of a solution, then
the constraint |n| ≤ 1 is authomatically satisfied. This helps in the estimates which actually could
not be performed in this way in the case of a classical double-well potential.

Finally, in order to avoid complications due to the interaction with the boundary, we will settle
the above system on the flat 3-dimensional torus

T 3 =
(
[−π, π]|{−π,π}

)3
(1.12)

so assuming periodic boundary conditions. We note that more realistic choices for the boundary
conditions could be likely taken. Nevertheless the above setting, beyond being the simplest one
mathematically, is also consistent with the basic physical principles of conservation of charge and of
momentum (indeed, we assume no external forces be present), that can be verified respectively by
integrating (1.1) and (1.3) with respect to space variables.

Our main aim here is to set the ground for proving the existence of weak solutions. These are
usually obtained via three steps: ‘apriori estimates’, ‘approximation scheme’, and ‘compactness’.

The apriori estimates are obtained on presumptive smooth solutions of the equation. Such esti-
mates allow to control (in terms of initial data and fixed parameters of the system) certain norms,
sufficiently strong, in order to allow to pass to the limit in the approximation scheme.

The approximation scheme is usually designed such that one can obtain estimates for the approx-
imating equations that are usually very close to the apriori estimates. The construction of such a
scheme can be a highly tedious and non-trivial issue in presence of complex systems as we consider
(see for comparison our previous works on non-isothermal liquid crystals, with an approximation
scheme [11] and without one, just with apriori estimates as in here [12]). Thus we will leave the
construction of such a scheme to interested readers and focus just on the first part, namely obtaining
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apriori estimates that are strong enough in order to allow to pass to the limit in the approximation
scheme via compactness and we will refer to this as ‘weak sequential stability’, the main content of
Theorem 1.

In addition to that, we will focus on a simplified version of system (1.1)-(1.5), complemented with
the Cauchy conditions and with periodic boundary conditions in three dimensions of space and with
no restrictions on the magnitude of the initial data. The precise simplifications will be introduced
in the next section, but it is worth observing that, beyond setting some physical constants equal to
one, the only effective reduction we are actually going to operate concerns the number of species ck
which will be assumed to be equal to 2. Namely, we only take two species cp and cm, which will
then denote the density of positive and negative charges, respectively. Mathematically speaking,
this ansatz simplifies the nature of the system (1.1)-(1.2), and in particular permits us to prove by
means of very simple maximum principle arguments the uniform boundedness of cp and cm, which
is a key ingredient for obtaining the apriori estimates.

It is worth noting that we expect the same boundedness property to hold also in the general
case of N -species, however the proof may be much more involved and require use of more technical
results about invariant regions for evolutionary systems (see, e.g., [5]). We also expect that similar
arguments could be applied in the more complicated systems where one uses a tensorial order
parameter, that is a matrix valued function, i.e. a Q-tensor in the LC terminology, instead of the
vector-valued one, n, as done for instance in [3]. The current work is related to work done in certain
simpler systems that can be regarded as subsets of our equations, such as Nernst-Planck-Navier-
Stokes system (see for instance [7] and the references therein) and liquid crystal equations (see for
instance the review [16]).

The main ingredients of the proofs are the following: first we perform an energy estimate which
is mainly based on a key Lemma (cf. Lemma 1) providing sufficient conditions on the αi-coefficients
such that the dissipation is non-negative. Then, via a maximum-principle technique, we prove
pointwise bounds for cp and cm. The L∞-estimate on the potential Φ follows instead by a Moser-
iteration scheme proved in Lemma 2, while in Lemma 3 we state an Lp-regularity result for n. This
result, based on an Lp-estimate for the potential ∂F , is in general new in the framework of non-
smooth parabolic systems, while it is quite known in case of scalar equations (cf., e.g., [6]). Finally,
an additional regularity result for n (cf. Lemma 4) is shown in case the anisotropy coefficient ε is
sufficiently small. In the last Section 4 the weak sequential stability property result is proved for
every ε > 0.

The plan of the paper is as follows: in the next section 2 we introduce the simplified version
of system (1.1)-(1.5) and state the precise formulation of our existence theorem. Then, the basic
apriori estimates are derived in Section 3.

Finally, in Section 4 we will prove the stability result.

2. Main results. We start introducing some notation. Given a space of functions defined over Ω =
T 3, we will always use the same notation for scalar-, vector-, or tensor-valued function. For instance,
we will indicate by the same letter H the spaces L2(Ω), L2(Ω)3 and L2(Ω)3×3. Correspondingly, the
norm in H will be simply denoted by ‖ · ‖. The notation actually subsumes the periodic boundary
conditions. We also set V = H1(Ω) (or H1(Ω)3, or H1(Ω)3×3). For two 3 × 3 matrices A, B, we
also set A : B := AijBij .

In view of the discussion carried out above, we now introduce the simplified system for which we
shall prove existence of weak solutions. Namely, we assume ε⊥ = kBθ = K = ε0 = q = γ1 = γ2 = 1
and write ε in place of εa. Moreover, we only take two species cp and cm with zp = 1 and zm = −1.
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Moreover we take, similarly in spirit as in [2], Section 3.1, the matrices Dp = Dk = Id + εn ⊗ n.1

Then the simplified system takes the form

∂cp
∂t

+ v · ∇cp = div
(
(Id + εn⊗ n)(∇cp + cp∇Φ)

)
, (2.1)

∂cm
∂t

+ v · ∇cm = div
(
(Id + εn⊗ n)(∇cm − cm∇Φ)

)
, (2.2)

−div
(
(Id + εn⊗ n)∇Φ

)
= cp − cm, (2.3)

∂v

∂t
+ (v · ∇)v +∇p = α4 divD(v)− div(∇n�∇n)

+ div
(
(∇Φ⊗∇Φ)(Id + εn⊗ n)

)
+ div

(
α1(D(v)n · n)n⊗ n+ α2n̊⊗ n+ α3n⊗ n̊

)
+ div

(
α5D(v)n⊗ n+ α6n⊗D(v)n

)
, (2.4)

div v = 0, (2.5)

nt + v · ∇n− Ω(v)n+D(v)n = ∆n+ ε (∇Φ⊗∇Φ)n− ∂F (n). (2.6)

Note that ∂F denotes the subdifferential of F in the sense of convex analysis. Although one can
use more general assumptions on the potential here we are assuming for definiteness that

F (n) :=

{
1
2F (|n|2)− F∗, if |n| ≤ 1
+∞, otherwise

(2.7)

where

F (r) := (1− r) log(1− r)− F∗, r ∈ (0, 1), (2.8)

and F∗ is chosen such that min F (r) = F (1− 1/e) = 0.
Moreover, in order to prove the energy estimate (cf. Lemma 1), let us suppose that there exists

δ > 0 such that

α4 > 0, α4 − |α1| − |α5| − |α6| −
1

1− δ
> 0. (2.9)

Finally, we assume the initial data to satisfy the following conditions, where c̄ > 0 is a given constant:

cp,0, cm,0 ∈ L∞(T 3), 0 ≤ cp,0, cm,0 ≤ c̄ a.e. in T 3, (2.10)

v0 ∈ L2(T 3), div v0 = 0, (2.11)

n0 ∈ H1(T 3), |n0(x)| ≤ 1,∀x ∈ T 3, (2.12)

Let us now define the weak solutions, in a rather standard way, but emphasizing the spaces of
functions used.

1 This simplification is not necessary for obtaining the energy law in Proposition 1, but essential in deriving the

maximum principle in Proposition 2
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Definition 1. [Weak solutions] Assume hypotheses (2.8), (2.10)–(2.12). Then, the functions

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.13)

n ∈W 1,p0(0, T ;Lp0(T 3)) ∩ Lp0(0, T ;W 2,p0(T 3)) ∩ L∞(0, T ;V ) ∩ L∞((0, T )× T 3), (2.14)

F (n) ∈ Lp0(0, T ;Lp0(T 3)) for some p0 > 1, (2.15)

Φ ∈ L∞(0, T ;V ) ∩ L∞(0, T ;L∞(T 3)) ∩ L∞(0, T ;W 1,pM (T 3)) for some pM > 2, (2.16)

cp, cm ∈W 1,4/3(0, T ;V ′) ∩ L2(0, T ;V ) ∩ L∞(0, T ;L∞(T 3)), (2.17)

cp, cm ≥ 0 a.e. in T 3 × (0, T ), (2.18)

are a weak solution of (2.1)–(2.5) provided that∫ T

0

(
<
∂cp
∂t

, φp > −
∫

Ω

vcp · ∇φp
)

=

∫ T

0

∫
Ω

(
(Id + εn⊗ n)(∇cp + cp∇Φ)

)
∇φp, (2.19)∫ T

0

(
<
∂cm
∂t

, φm > −
∫

Ω

vcm · ∇φm dx
)

=

∫ T

0

∫
Ω

(
(Id + εn⊗ n)(∇cm − cm∇Φ)

)
∇φm, (2.20)∫ T

0

∫
Ω

(
(Id + εn⊗ n)∇Φ

)
: ∇u =

∫ T

0

∫
Ω

(cp − cm)u, (2.21)∫ T

0

∫
Ω

v
∂z

∂t
+ (v ⊗ v) : ∇z = −

∫
Ω

v0z(0) dx+

∫ T

0

∫
Ω

σ : ∇z − (∇n�∇n) : ∇z

+

∫ T

0

∫
Ω

(
(∇Φ⊗∇Φ)(Id + εn⊗ n)

)
: ∇z (2.22)

nt + v · ∇n− Ω(v)n+D(v)n = ∆n+ ε (∇Φ⊗∇Φ)n− ∂F (n) a.e. in T 3 × (0, T ), (2.23)

with σ, D(v), and Ω(v) defined as in (1.10) and (1.7), and holding true for every test functions
φp, φm ∈ L4(0, T ;V ), u ∈ L2(0, T ;V ), z ∈ C∞(T 3 × [0, T ]), div z = 0 and coupled with the initial
conditions:

cp(0) = cp,0, cm(0) = cm,0, in V ′, n(0) = n0, v(0) = v0, a.e. in T 3. (2.24)

The weak sequential stability theorem we aim to prove is the following:

Theorem 1. Let us assume that there exists a family (c
(k)
p , c

(k)
m ,Φ(k), v(k), n(k))k∈N of smooth solu-

tions of the system (2.1)–(2.5) on the flat 3-dimensional torus T 3 subject to corresponding initial
data

c(k)
p (0) = c

(k)
p,0, c(k)

m (0) = c
(k)
m,0, n(k)(0) = n

(k)
0 , (2.25)

with (c
(k)
p,0, c

(k)
m,0, n

(k)
0 ) ∈ (C∞(T 3))3. We furthermore assume that the conditions (2.7),(2.8), (2.10)–

(2.12), (1.9) hold. Moreover we assume that there exists a constant C̃, independent of k ∈ N, such
that

‖c(k)
p,0‖L∞ , ‖c

(k)
m,0‖L∞ , ‖n

(k)
0 ‖H1(T 3), ‖v0‖H ≤ C̃ and cki,0 → ci,0, nk0 → n0, (2.26)

the latter convergence relations holding, e.g., in the sense of distributions.

Then there exists a (non-relabelled) sequence of the family (c
(k)
p , c

(k)
m ,Φ(k), v(k), n(k)) tending, in

the sense explicated in relations (4.1)–(4.7) below, to a quintuple (cp, cm,Φ, v, n) solving system (2.1)-
(2.6) in the sense specified in Definition 1.

Remark 1. In fact one would need solutions which are not smooth but just ‘sufficiently regular’,
but the precise minimal regularity needed is not of interest since in general the solutions obtained
through approximations scheme are smooth.
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The rest of the paper is devoted to the proof of Theorem 1.

3. Apriori estimates. We now prove a number of apriori estimates on the solutions of system (2.1)-
(2.6). As noted above, we decided to perform the computations by directly working on the “limit”
equations without referring to any explicit regularization or approximation scheme. Of course, in
such a setting, the procedure has just a formal character because the use of some test function as well
as some integration by parts is not justified (this, for instance, surely happens in connection with the
Navier-Stokes system (2.4)). On the other hand, the computations we are going to develop are not
trivial and involve a certain number of subtlenesses; for this reason we believe that presenting them
in the simplest possible setting might help comprehension. Actually, in the last part of the paper we
will provide some hints about the construction of an approximation scheme being compatible with
the estimates.

The first property we prove is the basic energy estimate resulting as a consequence of the varia-
tional nature of the model. We state it in the form of a

Proposition 1 (Energy law). Let (cm, cp,Φ, v, n) : Ω → R × R × R × R3 × R3 be a sufficiently
smooth solution of system (2.1)-(2.6) on T 3× (0, T ) complemented with the initial conditions (2.24)
and satisfying the coefficient relations (2.9)(that ensure the non-negativity of the dissipation). Then
there holds the energy inequality

E(t) +

∫ t

0

∫
T 3

(
1

cp
|∇cp + cp∇Φ|2 +

1

cm
|∇cm − cm∇Φ|2

)
(3.1)

+

∫ t

0

∫
T 3

(
α4|D(v)|2 + α1(n ·D(v)n)2 + 2(̊n ·D(v)n) + (α5 + α6)|D(v)n|2 + |̊n|2︸ ︷︷ ︸

≥0

)
≤ E(0) (3.2)

where the energy functional is defined as

E(t) =

∫
T 3

(1

2
|v|2 +

1

2
|∇n|2 + F (n) + cp ln cp + cm ln cm +

1

2
(1 + εn⊗ n)∇Φ · ∇Φ

)
. (3.3)

Proof. We multiply the equation (2.1) by ln cp + Φ, integrate by parts using periodic boundary
conditions to obtain

d

dt

∫
T 3

cp(ln cp − 1) +

∫
T 3

c′pΦ +

∫
T 3

(v · ∇cp)Φ

+

∫
T 3

(Id + εn⊗ n)(∇cp + cp∇Φ) ·
(∇cp
cp

+∇Φ
)

= 0, (3.4)

whence, by positive definiteness of the matrix n⊗ n,

d

dt

∫
T 3

cp(ln cp − 1) +

∫
T 3

c′pΦ︸ ︷︷ ︸
:=A11

+

∫
T 3

(v · ∇cp)Φ︸ ︷︷ ︸
:=A21

+

∫
T 3

1

cp
|∇cp + cp∇Φ|2 ≤ 0. (3.5)

Similarly, testing (2.2) by ln cm − Φ we have

d

dt

∫
T 3

cm(ln cm − 1)−
∫
T 3

c′mΦ−
∫
T 3

(v · ∇cp)Φ

+

∫
T 3

(Id + εn⊗ n)(∇cm − cm∇Φ) ·
(∇cm
cm
−∇Φ

)
= 0, (3.6)



8 EDUARD FEIREISL, ELISABETTA ROCCA, GIULIO SCHIMPERNA, AND ARGHIR ZARNESCU

whence

d

dt

∫
T 3

cm(ln cm − 1)−
∫
T 3

c′mΦ︸ ︷︷ ︸
:=A12

−
∫
T 3

(v · ∇cm)Φ︸ ︷︷ ︸
:=A22

+

∫
T 3

1

cm
|∇cm − cm∇Φ|2 ≤ 0. (3.7)

We now test (2.3) by −∂tΦ getting, after an integration by parts,

−
∫
T 3

(Id + εn⊗ n)∇Φ · ∇Φt +

∫
T 3

(cp − cm)Φt = 0, (3.8)

which can be expanded into

−ε
2

d

dt

∫
T 3

(n⊗ n∇Φ) · ∇Φ−
∫
T 3

∇Φ · ∇Φt +

∫
T 3

(cp − cm)Φt︸ ︷︷ ︸
:=A13

= −ε
2

∫
T 3

∂t(n⊗ n)∇Φ · ∇Φ︸ ︷︷ ︸
:=A3

. (3.9)

Multiplying (2.3) by −v · ∇Φ and integrating by parts we get

−
∫
T 3

(
(Id + εn⊗ n)∇Φ

)
· ∇(v · ∇Φ) +

∫
T 3

(cp − cm)v · ∇Φ = 0. (3.10)

Splitting the left-hand side and integrating by parts further, we obtain

−
∫
T 3

(∇Φ⊗∇Φ) : ∇v︸ ︷︷ ︸
:=A4

−ε
∫
T 3

(
(n⊗ n)∇Φ

)
· ∇(v · ∇Φ)︸ ︷︷ ︸

:=A5

+

∫
T 3

(cp − cm)v · ∇Φ︸ ︷︷ ︸
:=B2

= 0. (3.11)

Multiplying (2.4) by v and integrating by parts, we get

1

2

d

dt
‖v‖2 + α4‖D(v)‖2 =

∫
T 3

(∇n�∇n) : ∇v︸ ︷︷ ︸
:=A6

−
∫
T 3

∇Φ⊗∇Φ : ∇v︸ ︷︷ ︸
A4

−ε
∫
T 3

(
(∇Φ⊗∇Φ)(n⊗ n)

)
: ∇v︸ ︷︷ ︸

:=B51

−
∫
T 3

(
α1(Dn · n)n⊗ n+ α2n̊⊗ n+ α3n⊗ n̊+ α5Dn⊗ n+ α6n⊗Dn

)
: ∇v︸ ︷︷ ︸

:=B7

. (3.12)

Finally, multiplying (2.6) by ṅ = nt + v · ∇n we get∫
T 3

(̊
n+D(v)n

)
· ṅ︸ ︷︷ ︸

:=A7

+
1

2

d

dt
‖∇n‖2 +

d

dt

∫
T 3

F (n) +

∫
T 3

∇n · ∇(v · ∇n)︸ ︷︷ ︸
:=B6

= ε

∫
T 3

∇Φ⊗∇Φ : n⊗ nt︸ ︷︷ ︸
B3

+ε

∫
T 3

(
(∇Φ⊗∇Φ)n

)
· (v · ∇)n︸ ︷︷ ︸

B52

. (3.13)
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We can now sum (3.5), (3.7), (3.9), (3.11), (3.12), (3.13). We combine a number of terms and may
note several cancellations, namely

d

dt

∫
T 3

(
− 1

2
(Id + εn⊗ n)∇Φ · ∇Φ + (cp − cm)Φ

)
= A11 + A12 + A13,

A21 + A22 = B2, A3 = B3, A6 = B6.

The most delicate cancellation is A5 = B51 + B52, which amounts to

−
∫
T 3

(n⊗ n∇Φ) · ∇(v · ∇Φ) = −
∫
T 3

(∇Φ⊗∇Φ)n⊗ n : ∇v +

∫
T 3

(∇Φ⊗∇Φ)n) · (v · ∇)n,

which, after expanding (n ⊗ n∇Φ) · ∇(v · ∇Φ) = (n ⊗ n∇Φ) · (∇v∇Φ) + (n ⊗ n∇Φ) · (v · ∇)∇Φ,
simplifies to

−
∫
T 3

ninj∂jΦvk∂i∂kΦ =

∫
T 3

∂iΦ∂jΦnjvk∂kni. (3.14)

Then, we integrate by parts the ∂k derivative and note that no boundary terms appear due to the
choice of periodic boundary conditions. Hence, using ∂kvk = 0 we obtain

−
∫
T 3

ninj∂jΦvk∂i∂kΦ =

∫
T 3

ni,knj∂jΦ∂iΦvk

+

∫
T 3

ninj,k∂jΦ∂iΦvk +

∫
T 3

ninj∂j∂kΦ∂iΦvk. (3.15)

We note that after permuting the indices the above turns into

− 2

∫
T 3

ninj∂jΦvk∂i∂kΦ = 2

∫
T 3

ni,knj∂jΦ∂iΦvk, (3.16)

which is exactly (3.14), thus proving the claimed cancellation A5 = B51 + B52.
Furthermore, as in [2] we have

A7 + B7 = α1(n ·Dn)2 + 2(̊n ·Dn) + α4|D|2 + (α5 + α6)|Dn|2 + |̊n|2 (3.17)

Collecting the above computations, and using also the charge conservation property

d

dt

∫
T 3

(cp + cm) = 0, (3.18)

we finally arrive at

d

dt

∫
T 3

(
1

2
|v|2 +

1

2
|∇n|2 + F (n) + cp ln cp + cm ln cm

− 1

2
(Id + εn⊗ n)∇Φ · ∇Φ + (cp − cm)Φ

)
+

∫
T 3

(
1

cp
|∇cp + cp∇Φ|2 +

1

cm
|∇cm − cm∇Φ|2 + α4|D(v)|2

)
+

∫
T 3

(
α1(n ·Dn)2 + 2(̊n ·Dn)2 + (α5 + α6)|Dn|2 + |̊n|2

)
≤ 0. (3.19)

Let us now notice that, testing (2.3) by Φ and integrating by parts, there follows∫
T 3

(cp − cm)Φ =

∫
T 3

(Id + εn⊗ n)∇Φ · ∇Φ. (3.20)

Replacing the above into (3.19), we obtain (3.2), which concludes the proof.
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The energy estimate (3.2) implies a number of apriori bounds for the solutions of system (2.1)-(2.6),
provided that the dissipation term is nonnegative. In our simplified setting (where we have set
γ1, γ2 = 1, this results as a restriction on the choice of the parameters αj . Namely, we can observe
the following

Lemma 1. If (2.9) holds true, then we have, for some δ′ > 0,

α4|D|2 + α1(n ·Dn)2 + 2(̊n ·Dn) + (α5 + α6)|Dn|2 + |̊n|2 ≥ δ′
(
|Dn|2 + |̊n|2

)
(3.21)

for arbitrary n̊ ∈ R3, n ∈ R3, D ∈ R3×3 with |n| ≤ 1 and the matrix D symmetric and traceless.

Proof. Noting that we have (where we use that |n| ≤ 1):

(n ·Dn)2 ≤ |n|2|Dn|2 ≤ |D|2, |2(̊n ·Dn)| ≤ 2|̊n||Dn| ≤ (1− δ)|̊n|2 +
1

1− δ
|D|2

we immediately deduce that (2.9) implies the claimed (3.21).

In the sequel we shall always assume (2.9). In this way, as a consequence of the energy estimate (3.2),
using also the positive definiteness of the matrix n⊗ n and (2.8), we can obtain a number of apriori
bounds holding for any hypothetical solution of the system and independently of any eventual
approximation or regularization parameter. Namely, we have

‖v‖L∞(0,T ;H) + ‖v‖L2(0,T ;V ) ≤ c, (3.22)

‖n‖L∞(0,T ;V ) ≤ c, |n| ≤ 1 a.e. in (0, T )× T 3, (3.23)

cp, cm ≥ 0 a.e. in (0, T )× T 3, (3.24)

‖∇Φ‖L∞(0,T ;H) ≤ c. (3.25)

where c is a constant depeding only on E(0) as defined in (3.3). Note that the second bound in
(3.23) directly follows from our choice of the potential F .

Proposition 2 (Maximum principle). Let c0p, c
0
m : T 3 → R+ satisfy (2.24) and let v, n satisfy

(3.22), (3.23). Then, if (cp, cm,Φ) solve equations (2.1), (2.2), (2.3) subject to periodic boundary
conditions and initial data c0p, c

0
m as above, then there follows

|cp(x, t)|, |cm(x, t)| ≤ c̄, a.e. in (0, T )× T 3. (3.26)

Proof. We multiply (2.1) by (cp − c̄)+ and integrate over T 3 and by parts, to obtain

1

2

d

dt

∫
T 3

|(cp − c̄)+|2 +
1

2

∫
T 3

v · ∇((cp − c̄)+)2

+

∫
T 3

(Id + εn⊗ n)∇(cp − c̄)+ · ∇(cp − c̄)+

+

∫
T 3

(Id + εn⊗ n)∇Φ · ∇
(1

2
((cp − c̄)+)2 + c̄(cp − c̄)+

)
= 0. (3.27)

Similarly, we get from (2.2)

1

2

d

dt

∫
T 3

|(cm − c̄)+|2 +
1

2

∫
T 3

v · ∇((cm − c̄)+)2

+

∫
T 3

(Id + εn⊗ n)∇(cm − c̄)+ · ∇(cm − c̄)+

−
∫
T 3

(Id + εn⊗ n)∇Φ · ∇
(1

2
((cm − c̄)+)2 + c̄(cm − c̄)+

)
= 0. (3.28)
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We now define

M(r) :=

{
0 if r ≤ c̄,
1
2 ((r − c̄)+)2 + c̄(r − c̄)+ if r ≥ c̄,

(3.29)

Then, summing (3.27) and (3.28) and using incompressibility, we deduce

1

2

d

dt

∫
T 3

(
|(cp − c̄)+|2 + |(cm − c̄)+|2

)
≤ −

∫
T 3

(Id + εn⊗ n)∇Φ · ∇(M(cp)−M(cm)). (3.30)

The integral on the right-hand side can be computed by using (2.3). This leads to

1

2

d

dt

∫
T 3

(
|(cp − c̄)+|2 + |(cm − c̄)+|2

)
≤ −

∫
T 3

(cp − cm)(M(cp)−M(cm)) ≤ 0, (3.31)

the inequality following from the monotonicity of the function M . Noting that (2.24) implies that
the left-hand side is null at t = 0, we obtain the claimed estimate.

In particular, we have obtained the additional bound

‖cp‖L∞(0,T ;L∞(T 3)) + ‖cm‖L∞(0,T ;L∞(T 3)) ≤ c. (3.32)

where the constant c depends just on the L∞ norm of cp(0) and cm(0). We can then test (2.1) by
cp and (2.2) by cm. Using once more the positive definiteness of the matrix n⊗n, we may note that∣∣∣∣∫

T 3

cp∇Φ · ∇cp
∣∣∣∣ ≤ ‖cp‖L∞(T 3)‖∇Φ‖H‖∇cp‖H ≤ c‖∇cp‖H ≤ c+

1

2
‖∇cp‖2H , (3.33)

with an analogous relation holding for cm and where the constants c > 0 are independent of time
in view of (3.25) and (3.32). Analogously we can estimate the term −

∫
T 3 ε(n ⊗ n)cp∇Φ · ∇cp by

(3.23).
Then, it is not difficult to deduce the parabolic regularity estimate

‖cp‖L2(0,T ;V ) + ‖cm‖L2(0,T ;V ) ≤ c. (3.34)

In view of the fact that Φ is defined up to an additive constant, it is not restrictive to assume that

ΦΩ =

∫
T 3

Φ(t) = 0 for a.e. t ∈ (0, T ). (3.35)

Of course, such a normalization property, joint with (3.25), implies

‖Φ‖L∞(0,T ;V ) ≤ c. (3.36)

We have, however, a better property which is given by the following

Lemma 2 (Uniform boundedness of Φ). We have the additional estimate

‖Φ‖L∞(0,T ;L∞(T 3)) ≤ c. (3.37)

Proof. The proof follows by applying a Moser iteration argument on equation (2.3) and using the
uniform boundedness of the right-hand side following from estimate (3.32). We give some highlights
for the reader’s convenience. As a general rule, we multiply equation (2.3) by (Φ)p−1 := |Φ|p−1 sign Φ
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where the exponent p will be taken larger and larger. This gives

(p− 1)

∫
T 3

(Id + εn⊗ n)|Φ|p−2∇Φ · ∇Φ =

∫
T 3

(cp − cm)|Φ|p−1 sign Φ

≤ c
∫
T 3

|Φ|p−1 ≤ c
∫
T 3

(
1

p
+
p− 1

p
|Φ|p

)
≤ c

p
+ c

∫
T 3

|Φ|p. (3.38)

As a first step, we take p = p0 = 6. Then, controlling the right-hand side by the Poincaré-Wirtinger
inequality we deduce (cf. also (3.35))

c

∫
T 3

|Φ|6 = c‖Φ− ΦΩ‖66 ≤ c‖∇Φ‖62 ≤ c, (3.39)

the last inequality following from (3.25). Here and below, we are noting simply by ‖ · ‖q the norm in
Lq(T 3), 1 ≤ q ≤ ∞, for notational simplicity. We also point out that all the estimates obtained in
this proof are uniform with respect to the time variable, because so are (3.25) and (3.32) that serve
as a starting point of the argument.

Hence, noting that

(p− 1)

∫
T 3

(Id + εn⊗ n)|Φ|p−2∇Φ · ∇Φ ≥ 4(p− 1)

p2

∫
T 3

∣∣∇(Φ)p/2
∣∣2 (3.40)

at the first iteration, i.e. for p = 6, we deduce∥∥∇Φ3
∥∥

2
≤ c, (3.41)

whence, recalling (3.25) and using Sobolev’s embeddings,

‖Φ‖318 ≤ c(
∥∥∇|Φ|3∥∥

2
+ ‖Φ‖36) ≤ c. (3.42)

Now, in order to take care of further iterations, we need to keep trace of the dependence on p of
the various constants. Let us, then, go back to (3.38) with a generic p and combine it with (3.40)
to deduce (for p ≥ 2)∫

T 3

∣∣∇(Φ)p/2
∣∣2 ≤ cp

(p− 1)
+

cp2

p− 1

∫
T 3

|Φ|p ≤ c+ c(p+ 2)

∫
T 3

|Φ|p

where c is independent of p.
Adding also ‖Φ‖pp to both hand sides and using the Sobolev embedding, we then deduce

‖Φ‖p3p =
∥∥(Φ)p/2

∥∥2

6
≤ c
∥∥(Φ)p/2

∥∥2

V

≤ c
∥∥(Φ)p/2

∥∥2

2
+ c

∫
T 3

∣∣∇(Φ)p/2
∣∣2 ≤ c+ c(p+ 3)‖Φ‖pp ≤ c+ cp‖Φ‖pp, (3.43)

where c is still independent of p.
We define bp = max(1, ‖Φ‖p). Then, assuming without loss of generality that c ≥ 1 the last

inequality implies:
bp3p ≤ cpbpp

with c > 1 a constant independent of p. Then, since ln b3p ≤ ln(cp)
p + ln bp, we get

ln b3np ≤
ln(c3(n−1)p)

3n−1p
+ ln b3n−1p

≤ ln(c3(n−1)p)

3n−1p
+

ln(c3(n−2)p)

3n−2p
+ · · ·+ ln bp.
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and hence

ln b3np ≤
n−1∑
k=1

ln(c3kp)

c3kp
+ ln bp.

Noting that constant c is independent of n and p and letting n↗∞ we obtain (3.37).

It is worth observing that the bounds derived up to this point are not sufficient for passing to the
limit in (a suitable approximation) of system (2.1)-(2.6), the main trouble being represented by the
quadratic terms in ∇Φ and ∇n. Indeed, at the moment such quantities are bounded only in L2

with respect to space variables. Hence, at the limit we might expect occurrence of defect measures.
Fortunately, this is not the case, because it is possible to improve a bit the regularity properties
proved so far.

Lemma 3 (Additional regularity estimate). Let us assume that the initial data satisfy (2.10)–(2.12).
Then the following additional regularity conditions hold:

‖∇Φ‖L∞(0,T ;LpM (T 3)) ≤ cpM , for some pM > 2 (3.44)

‖nt‖Lp0 (0,T ;Lp0 (T 3)) + ‖∆n‖Lp0 (0,T ;Lp0 (T 3)) ≤ c, for some p0 > 1 (3.45)

‖∂F (n)‖Lp0 (0,T ;Lp0 (T 3)) ≤ c for some p0 > 1. (3.46)

Proof. The key point stands in the application of some refined elliptic regularity result to equation
(2.3). Indeed, in view of the bound |n| ≤ 1 and of the positive definiteness of n ⊗ n, the matrix
Id + εn ⊗ n is strongly elliptic and has bounded coefficients. Since the right-hand side of (2.3) is
uniformly bounded by (3.26), we can then apply the integrability result [17, Thm. 1, p. 198], which
implies

‖∇Φ‖L∞(0,T ;LpM (T 3)) ≤ cpM for some pM > 2. (3.47)

Note that, at least in three space dimensions, there is no quantitative control of pM . Nevertheless,
we know that pM > 2. As a consequence of (3.44), (2.6) can be rearranged in the form

nt −∆n+ ∂F (n) = −v · ∇n+ Ω(v)n−D(v)n+ ε (∇Φ⊗∇Φ)n︸ ︷︷ ︸
:=f

, (3.48)

where a simple check based on the previous estimates (3.22), (3.23) shows that, at least,

v · ∇n+ Ω(v)n−D(v)n ∈ L 3
2 (0, T ;L

3
2 (T 3))

which together with (3.47) implies

f ∈ Lp(0, T ;Lp(T 3)). (3.49)

for all p ≤ p0 where

p0 := min

(
3

2
,
pM
2

)
. (3.50)

Recalling (2.7), we observe that, componentwise, equation (3.48) takes the form

∂tni −∆ni + F ′(|n|2)ni = fi, (3.51)

where F ′ is monotone because F is convex.
This property, however, has to be a bit clarified. Indeed, the function F may be nonsmooth,

and its subdifferential ∂F may be (and in fact has to be, in view of assumption (2.8)) a singular
operator. Hence, here and below the use of F ′ to represent the subdifferential ∂F is formal and
to make the procedure fully rigorous one should rather perform some regularization of F and then
pass to the limit. Since this kind of argument is rather standard, we omit details for brevity.
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Take from now on p =: p0 (for simplicity of notation). We then test (3.51) by the function
Gi(n) = |F ′(|n|2)|p−1 signF ′(|n|2)ni to obtain

1

2

∫
T 3

|F ′(|n|2)|p−1 signF ′(|n|2)
d

dt
|ni|2 +

∫
T 3

|F ′(|n|2)|pn2
i

+

∫
T 3

|F ′(|n|2)|p−1 signF ′(|n|2)|∇ni|2 +Mi =

∫
T 3

fi F
′(|n|2)|p−1 signF ′(|n|2)ni, (3.52)

where the “mixed” term M is given by

Mi = (p− 1)

∫
T 3

|F ′(|n|2)|p−2F ′′(|n|2)ni∇|n|2 · ∇ni

=
(p− 1)

2

∫
T 3

|F ′(|n|2)|p−2F ′′(|n|2)∇|n|2 · ∇n2
i . (3.53)

Let us sum (3.52) for i = 1, 2, 3. It is then easy to check that

3∑
i=1

Mi =
(p− 1)

2

∫
T 3

|F ′(|n|2)|p−2F ′′(|n|2)∇|n|2 · ∇|n|2 ≥ 0 (3.54)

due to convexity of F . We split the term
∫
T 3 |F ′(|n|2)|p−1 signF ′(|n|2)|∇n|2 over two subsets of T 3,

namely

T 3
+ :=

{
x ∈ T 3, |n|2(x) ≥ 1− 1

e

}
, respectively T 3

− :=

{
x ∈ T 3, |n|2(x) < 1− 1

e

}
,

where we neglect the dependence on t for simplicity.
Then, taking into account that F ′(r) ≥ 0 for r ∈ (1 − 1

e , 1), neglecting the positive term∫
T 3
+
|F ′(|n|2)|p−1 signF ′(|n|2)|∇n|2 on the left-hand side, and using that F ′(|n|2(x)) ∈ (−1, 0) for

x ∈ T 3
− we deduce:

1

2

∫
T 3

|F ′(|n|2)|p−1 signF ′(|n|2)
d

dt
|n|2 +

∫
T 3

|F ′(|n|2)|p|n|2

≤
∫
T 3

F ′(|n|2)|p−1 signF ′(|n|2)f · n+

∫
T 3
−

|F ′(|n|2)|p−1|∇n|2

≤
∥∥F ′(|n|2)|p−1 signF ′(|n|2)

∥∥
p/(p−1)

‖f · n‖p +

∫
T 3

|∇n|2

≤ c
∥∥F ′(|n|2)|

∥∥p−1

p
‖f‖p + c

≤ σ
∥∥F ′(|n|2)|

∥∥p
p

+ cσ‖f‖pp + c, (3.55)

where we also used Hölder’s and Young’s inequalities and the apriori bounds (3.23).
Now, note that

1

2

∫
T 3

|F ′(|n|2)|p−1 signF ′(|n|2)
d

dt
|n|2 =

d

dt

∫
T 3

Γp(|n|2), (3.56)

where the function Γp is defined by the right-hand side above and it is bounded from below. Notice
that limr→1− Γp(r) < +∞ and that∫

T 3

|F ′(|n|2)|p|n|2 ≥ 1

2

∫
T 3

|F ′(|n|2)|p − c (3.57)

(to see this, split the integral into the subregions |n|2 ≤ 1/2, where F ′ is bounded and |n| ≥ 1/2
which gives the control from below). Hence, taking σ < 1/2, we see that the first term on the
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right-hand side of (3.55) is controlled. On the other hand, integrating in time, we may note that
the latter term in (3.55) is also controlled by (3.49). As a consequence, we obtain first

‖F ′(|n|2)‖Lp((0,T )×T 3) ≤ c

and, as a consequence,

‖∂F(n)‖Lp((0,T )×T 3) ≤ c .
Finally, comparing terms in (3.5) and applying elliptic regularity results of Agmon-Douglis-Nirenberg
type, we get the bound

‖nt‖Lp(0,T ;Lp(T 3)) + ‖∆n‖Lp(0,T ;Lp(T 3)) ≤ c, (3.58)

where we also used the regularity n0 ∈W 1, 32 (T 3) which is actually implied by our assumption (2.12).

In the case when the anisotropy coefficient ε is small enough compared to the other parameters, we
can prove some additional estimates. This is stated in the following

Lemma 4 (H2-estimates). Let us assume that the initial data satisfy (2.10)–(2.12). Furthermore,
let ε > 0 be small enough. Then, we have

‖Φ‖L2(0,T ;H2(T 3)) + ‖n‖L2(0,T ;H2(T 3)) ≤ c. (3.59)

Proof. We proceed in a natural way by testing (2.6) by −∆n. Then, we can preliminarily observe
that, by convexity of F (and consequent monotonicity of the subdifferential),

−
∫
T 3

∂F (n) ·∆n ≥ 0. (3.60)

As already noted before, this property, due to nonsmoothness of ∂F , may require an approximation
argument to be proved rigorously.

That said, we arrive at the bound

1

2

d

dt
‖∇n‖2H + ‖∆n‖2H =

∫
T 3

(v · ∇n) ·∆n−
∫
T 3

(Ω(v)n) ·∆n

+

∫
T 3

(D(v)n) ·∆n−
∫
T 3

ε((∇Φ⊗∇Φ)n) ·∆n =:

4∑
j=1

Ij . (3.61)

and we need to estimate the terms Ij on the right-hand side. A key role will be played by the
inequality

‖∇z‖L4(Ω) ≤ c‖z‖
1/2
L∞(Ω)‖z‖

1/2
H2(Ω), (3.62)

holding for every z ∈ H2(Ω), Ω being a smooth bounded domain of R3 (for instance Ω = T 3). Then,
integrating by parts and using (2.5) with the periodic boundary conditions, we have

I1 = −
∫
T 3

(∇n�∇n) : ∇v ≤ ‖∇n‖2L4(Ω)‖∇v‖H

≤ c‖n‖L∞(Ω)

(
‖n‖H + ‖∆n‖H

)
‖∇v‖H

≤ c+
1

6
‖∆n‖2H + c‖∇v‖2H , (3.63)

where we used in an essential way the property |n| ≤ 1 almost everywhere.
Next, it is clear that

I2 + I3 ≤ c‖n‖L∞(Ω)‖∇v‖H‖∆n‖H ≤
1

6
‖∆n‖2H + c‖∇v‖2H , (3.64)
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and, finally,

I4 ≤ cε‖n‖L∞(Ω)‖∇Φ‖2L4(Ω)‖∆n‖H ≤ cε‖Φ‖L∞(Ω)‖Φ‖H2(Ω)‖∆n‖H

≤ cε2‖Φ‖2H2(Ω) +
1

6
‖∆n‖2H , (3.65)

where for the last inequality we implicitly used Lemma 2.
Taking (3.63)-(3.65) into account, (3.61) implies

d

dt
‖∇n‖2H + ‖∆n‖2H ≤ c+ c‖∇v‖2H + cε2‖Φ‖2H + cε2‖∆Φ‖2H , (3.66)

where we point out that the constants c, in particular the last one, may depend on the various
parameters of the problem, but are independent of the coefficient ε.

In order to control the last term, we apply elliptic regularity results to (2.3) (or, in other words,
we test it by −∆Φ) to obtain

‖∆Φ‖H ≤ c
(
ε‖∇n‖L4(Ω)‖n‖L∞(Ω)‖∇Φ‖L4(Ω) + ε‖D2Φ‖H‖n‖2L∞(Ω) + ‖cp − cm‖H

)
≤ c
(
ε‖∆n‖1/2H ‖∆Φ‖1/2H ‖Φ‖

1/2
L∞(Ω) + ε‖∆Φ‖H + 1

)
≤ 1

4
‖∆n‖H + cε‖∆Φ‖H + c. (3.67)

where we have repeatedly used (3.62). At this point, we may assume ε so small that cε ≤ 1/2.
Then, the second term on the right-hand side can be absorbed by the corresponding quantity on the
left-hand side. Squaring the resulting relation, we then deduce

‖∆Φ‖2H ≤
1

4
‖∆n‖2H + c. (3.68)

Replacing into (3.66), we arrive at

d

dt
‖∇n‖2H +

3

4
‖∆n‖2H ≤ c+ c‖∇v‖2H + c

ε2

2
‖∆n‖2H , (3.69)

which, possibly assuming ε small (such that cε2/2 ≤ 1/4), reduces to

d

dt
‖∇n‖2H +

1

2
‖∆n‖2H ≤ c+ c‖∇v‖2H . (3.70)

Integrating in time and recalling (3.22) we obtain the estimate for n in (3.59). The estimate for Φ
is then deduced by integrating in time (3.68).

4. Weak sequential stability: proof of Theorem 1. Let us assume (cp,k, cm,k,Φk, vk, nk) to be
a family of approximating solutions complying with the estimates derived in the previous section
uniformly with respect to the parameter k ∈ N. We will then prove that there exists a (non-
relabelled) sequence of the above sequence tending, in a suitable way, to a quintuple (cp, cm,Φ, v, n)
solving system (2.1)-(2.6) in the sense specified in Definition 1.

To this aim, we start deducing some convergence properties (as mentioned, we will always assume
to hold up to the extraction of subsequences) arising as a consequence of the bounds (3.22)-(3.25),
(3.32), (3.34), (3.36), (3.37), (3.44)–(3.46) and (3.59). Namely, we have that there exists λ ∈
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Lp0(0, T ;Lp0(T 3)) such that

vk → v weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (4.1)

nk → n weakly star in L∞(0, T ;V ) ∩ L∞(0, T ;L∞(T 3)), (4.2)

Φk → Φ weakly star in L∞(0, T ;V ) ∩ L∞(0, T ;L∞(T 3)), (4.3)

cp,k, cm,k → cp, cm weakly star in L2(0, T ;V ) ∩ L∞(0, T ;L∞(T 3)), (4.4)

∇Φk → ∇Φ weakly star in L∞(0, T ;LpM (T 3)), (4.5)

∂tnk, ∆nk, ∂F (nk)→ nt, ∆n, λ weakly in Lp0(0, T ;Lp0(T 3)), (4.6)

where in deducing (4.3) we also used the normalization (Φk)Ω = 0 and p0, pM are the exponents
introduced in Lemma 3. Of course this implies in particular ΦΩ = 0. Let us notice that, in the limit,
we preserve the boundedness conditions 0 ≤ cp ≤ c̄, 0 ≤ cm ≤ c̄, |n| ≤ 1 almost everywhere in T 3.
In addition to that, if ε is sufficiently small (cf. Lemma 4), we also get:

Φk, nk → Φ, n weakly in L2(0, t;H2(T 3)). (4.7)

In the following we show how to treat the passing to the limit just for the most difficult terms. We
first note that, by (3.22) and interpolation,

‖vk‖L4(0,T ;L3(T 3)) ≤ c, (4.8)

whence, using (3.34), there follows

‖vk · ∇cp,k‖L4/3(0,T ;L6/5(T 3)) + ‖vk · ∇cm,k‖L4/3(0,T ;L6/5(T 3)) ≤ c. (4.9)

Then, using uniform boundedness of cp,k, cm,k as well as the bounds (3.25), (3.32) it is not difficult
to deduce from (2.1), (2.2) that

‖∂tcp,k‖L4/3(0,T ;V ′) + ‖∂tcm,k‖L4/3(0,T ;V ′) ≤ c. (4.10)

Hence, taking also into account (3.45), the Aubin-Lions lemma with the uniform boundedness
property gives

cp,k, cm,k, nk → cp, cm, n strongly in Lq(0, T ;Lq(T 3)) ∀ q ∈ [1,∞). (4.11)

Then, using (4.6), (4.11), the monotonicity of ∂F , and the result [1, Prop. 1.1, p. 42], we get
λ = ∂F (n). Moreover, by (4.3) and (4.4) we get

‖cp,k∇Φk‖L∞(0,T ;H) + ‖cm,k∇Φk‖L∞(0,T ;H) ≤ c,

whence

cp,k∇Φk → cp∇Φ, cm,k∇Φk → cm∇Φ weakly star in L∞(0, T ;H),

where we have used also (4.11). Using the Gagliardo-Nirenberg inequality (cf. [18]) together with
(4.6) and the fact that |nk| ≤ 1, we get

‖∇nk �∇nk‖Ls(0,T ;Ls(T 3)) ≤ c for some exponent s > 1,

Finally, using the bound on ∂tnk in (4.6) and again the Gagliardo-Nirenberg inequality (cf. [18])
interpolating between the spaces L∞(0, T ;L∞(T 3)) and Lp0(0, T ;W 2,p0(T 3)) at place 1/2, we also
get the convergence

∇nk �∇nk → ∇n�∇n weakly in Ls(0, T ;Ls(T 3)), (4.12)

which is sufficient in order to conclude the passage to the limit as k → ∞ in order to obtain the
claimed weak solutions.
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