BOREL REDUCIBILITY AND CARDINAL ARITHMETIC

Jindřich Zapletal University of Florida Academy of Sciences, Czech Republic

Subject A.

Borel reducibility of analytic equivalence relations.

- most proofs in ZF+DC;
- Borel, analytic sets, actions of Polish groups;
- motivation from mathematical analysis.

Subject B.

Combinatorial set theory with choice.

- proofs with large cardinals, independence results;
- transfinite induction, forcing, pcf;
- set theoretic motivation.

The two subjects are connected.

With a pipe of large diameter

Example.

$E \not\leq F$

- *E*, *F* are both Borel equivalence relations classifiable by countable structures;
- the natural proof of E ≤ F uses the fact that the Singular Cardinal Hypothesis can fail at ℵ_ω.

The pinned cardinal-purpose.

- $\kappa(E)$ is a cardinal invariant respecting the Borel reducibility: $E \leq F \rightarrow \kappa(E) \leq \kappa(F)$;
- I produce E such that (provably) $\kappa(E) = (\aleph_{\omega}^{\aleph_0})^+;$
- ... and also F such that (provably) $\kappa(F) = \max{\mathfrak{c}, \aleph_{\omega+1}}^+;$
- the pinned cardinal can reflect many other combinatorial issues.

The pinned cardinal-definition.

Let E be an analytic equivalence relation on Polish X, let τ be a P-name for an element of X.

- The name τ is *pinned* if $P \times P \Vdash \tau_{\text{left}} E$ τ_{right} ;
- $\langle P, \tau \rangle \ \overline{E} \ \langle Q, \sigma \rangle \ \text{if} \ P \times Q \Vdash \tau \ E \ \sigma;$
- κ(E) is the smallest cardinal such that every pinned name has an E-equivalent on a poset of size < κ.

The pinned cardinal–features.

- $\kappa(E) = \aleph_1$ for *E* pinned, as a definitory matter;
- $\kappa(E) \leq \beth_{\omega_1}$ for Borel E;
- $\kappa(E)$ stays below the first measurable cardinal if not ∞ ;
- $\kappa(E) = \infty$ iff $E_{\omega_1} \leq E$;
- natural behavior vis-a-vis usual operations.

Evaluation I.

Definition. An $L_{\omega_1\omega}$ sentence is *set-like* if it has an extensional relation \in about which it proves that \in is wellfounded.

Theorem. If ϕ is set-like and E_{ϕ} is the isomorphism of models of ϕ , then $\kappa(E_{\phi})$ =supremum of possible sizes of models of ϕ .

Proof. Each pinned name in this case corresponds to a collapse of a (uncountable) model of ϕ .

Evaluation II.

Theorem. For every countable ordinal $\alpha > 0$ there is a set-like sentence ϕ_{α} which has models of exactly all sizes $\langle \aleph_{\alpha}$. Thus $\kappa(E_{\alpha}) = \aleph_{\alpha}$.

Proof. Induce on α . At limit stage, take disjunction of previous sentences. At successor stage $\alpha + 1$, let $\phi_{\alpha+1}$ be a sentence whose model consists of

- one model M_{β} for each ϕ_{β} for all $\beta \leq \alpha$;
- a separate linear ordering \prec ;
- for each p ∈ dom(≺), a single bijection between the set {q ∈ dom(≺) : q ≺ p} and one of the models M_β for β ≤ α.

Evaluation III.

Theorem. There is a set-like sentence ϕ which has models of size $\aleph_{\omega}^{\aleph_0}$ but no larger.

Proof. Models of ϕ are sets of maps from a model of ϕ_1 to a model of $\phi_{\omega+1}$.

Theorem. There is a set-like sentence ϕ which has models of size max{ $\mathfrak{c}, \aleph_{\omega+1}$ } but no larger.

Proof. The disjunction of $\phi_{\omega+2}$ and $\phi_{\mathfrak{c}}$.