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Abstract. Starting from Zhu recursion formulas for correlation functions for vertex operator algebras with formal parameters
associated to local coordinates around marked points on a Riemann surfaces, we introduce a cluster algebra structure over a non-
commutative set of variables. Cluster elements and mutation rules are explicitly defined. In particular, we propose an elliptic version
of vertex operator cluster algebras arising from correlation functions and Zhu reduction procedure for vertex operators on the torus.

INTRODUCTION

Since cluster algebras have been introduced in [15], they found numerous reincarnations in Mathematics [6, 7, 8, 9,
21, 22, 14, 29] and Mathematical Physics [42, 43, 3, 20]. The theory of cluster algebras is connected to many different
areas of mathematics, e.g., the representation theory of finite dimensional algebras, Lie theory, Poisson geometry and
Teichmüller theory [21]–[23]. Among those topics are dilogarithm identities for conformal field theories [42, 43],
quantum algebras [19, 25], quivers [27, 28, 41]. The list of references above is far form being complete.

Several application of cluster algebras in Conformal Field Theory are known [3, 42, 43]. Thus it would not
be a surprise if we could establish a direct algebraic connections between them. In particular, one could ask for a
version of cluster algebras over non-commutative set of variables. In this note we would like to sketch a way to
relate cluster algebras [15, 16, 17, 44] with vertex operator algebras [1, 12, 26]. Base on axioms of vertex algebras
and their theory of correlation functions on Riemann surfaces, we formulate definition of a vertex operator cluster
algebra. These algebras possess a structure similar to ordinary cluster algebras. At the same time, seeds are defined
over non-commutative variables (modes of vertex operators), coordinates around marked points, and matrix elements
of a number of vertex operators with formal parameters on a Riemann surface. Rich structure of a vertex operator
algebra enables us to enlarge the cluster algebra setup by introducing a number of non-commutative parameters.

Since the definition of a vertex operator cluster algebra includes correlation functions depending on local coordi-
nate on Riemann surfaces it would be interesting to understand possible relations of this construction with the quantum
dilogarithm identities as well as with the origin of ordinary cluster algebras arising [14] on Riemann surfaces.

CLUSTER ALGEBRAS

Let us first recall the notion of a cluster algebra [15, 16, 17] following notations of [44]. We consider commutative
cluster algebras of rank n. The set of all cluster variables is constructed recursively from an initial set of n cluster
variables using mutations. Every mutation defines a new cluster variable as a rational function of the cluster variables
constructed previously. Thus recursively, every cluster variable is a certain rational function in the initial n cluster
variables. These rational functions are Laurent polynomials [15].

A cluster algebra is determined by its initial seed which consists of a cluster x = {x1, . . . , xn}, of algebraically
independent set of generators, a coefficient tuple y = {y1, . . . , yn}, and a skew-symmetrizable n × n integer matrix (the
exchange matrix) B =

(
bi j

)
, i.e., bi, j = −b j,i. The coefficients {y1, . . . , yn} are taken in a torsion free abelian group P.



The mutation in direction k defines a new cluster

x′k xk = y+
∏
bk,i>0

xbk,i

i + y−
∏
bk,i<0

x−bk,i

i , (1)

where y± are certain monomials in the y1, . . . , yn. Mutations also transform the coefficient tuple y and the matrix B. If
u is any cluster variable, thus u is obtained from the initial cluster {x1, . . . , xn} by a sequence of mutations, then, by
[15], u can be written as a Laurent polynomial in the variables x1, . . . , xn, that is,

u =
f (x1, . . . , xn)

n∏
i=1

xdi
i

, (2)

for some di, where f (x1, . . . , xn) is a polynomial with coefficients in the group ring ZP of the coefficient group P. A
cluster algebra is said to be of finite type if it has only a finite number of seeds. In [16] it was shown that cluster
algebras of finite type can be classified in terms of the Dynkin diagrams of finite-dimensional simple Lie algebras. For
formal definition of a cluster algebra see subsection a).

Formal definition
Let P be an abelian group with binary operation ⊕. Let ZP be the group ring of P and let QP(x1, . . . , xn) be the field of
rational functions in n variables with coefficients in QP. A seed is a triple (x, y, B), where x = {x1, . . . , xn} is a basis of
QP (x1, . . . , xn), y = {y1, . . . , yn}, is an n-tuple of elements yi ∈ P, and B is a skew-symmetrizable matrix.

Given a seed (x, y, B) its mutation µk(x, y, B) in direction k is a new seed (x′, y′, B′) defined as follows. Let
[x]+ = max(x, 0). Then we have B′ = (b′i j) with

b′i j =

[
bi j for i = k or j = k,
bi j + [−bik]+bk j + bik[bk j]+, otherwise. (3)

For new coefficients y′ =
(
y′1, . . . , y

′
n

)
, with

y′j =
[

y−1
k if j = k,

y jy
[bk j]+
k (yk ⊕ 1)−bk j if j , k,

(4)

and x = {x1, . . . , xn}, where

x′k =
yk

n∏
i=1

x[bik]+
i +

n∏
i=1

x[−bik]+
i

(yk ⊕ 1)xk
. (5)

Mutations are involutions, i.e., µkµk(x, y, B) = (x, y, B).

VERTEX OPERATOR ALGEBRAS

A vertex operator algebra (VOA) [1, 5, 10, 12, 26, 31, 34] is determined by a quadruple (V,Y, 1, ω), where is a linear
space endowed with a Z-grading with V =

⊕
r∈Z Vr with dim Vr < ∞. The state 1 ∈ V0, 1 , 0, is the vacuum

vector and ω ∈ V2 is the conformal vector with properties described below. The vertex operator Y is a linear map
Y : V → End(V)[[z, z−1]] for formal variable z so that for any vector u ∈ V we have a vertex operator

Y(u, z) =
∑
n∈Z

u(n)z−n−1. (6)

The linear operators (modes) u(n) : V → V satisfy creativity

Y(u, z)1 = u + O(z), (7)

and lower truncation
u(n)v = 0, (8)



conditions for each u, v ∈ V and n ≫ 0. For the conformal vector ω one has

Y(ω, z) =
∑
n∈Z

L(n)z−n−2, (9)

where L(n) satisfies the Virasoro algebra for some central charge C

[ L(m), L(n) ] = (m − n)L(m + n) +
C
12

(m3 − m)δm,−nIdV , (10)

where IdV is identity operator on V . Each vertex operator satisfies the translation property

Y(L(−1)u, z) = ∂zY(u, z). (11)

The Virasoro operator L(0) provides the Z-grading with L(0)u = ru for u ∈ Vr, r ∈ Z. Finally, the vertex operators
satisfy the Jacobi identity

z−1
0 δ

(
z1 − z2

z0

)
Y(u, z1)Y(v, z2) − z−1

0 δ

(
z2 − z1

−z0

)
Y(v, z2)Y(u, z1) = z−1

2 δ

(
z1 − z0

z2

)
Y (Y(u, z0)v, z2) . (12)

These axioms imply locality, skew-symmetry, associativity and commutativity conditions:

(z1 − z2)NY(u, z1)Y(v, z2) = (z1 − z2)NY(v, z2)Y(u, z1), (13)

Y(u, z)v = ezL(−1)Y(v,−z)u,

(z0 + z2)NY(u, z0 + z2)Y(v, z2)w = (z0 + z2)NY(Y(u, z0)v, z2)w,

u(k)Y(v, z) − Y(v, z)u(k) =
∑
j≥0

(
k
j

)
Y(u( j)v, z)zk− j, (14)

for u, v, w ∈ V and integers N ≫ 0. For v = 1 one has

Y(1, z) = IdV . (15)

Note also that modes of homogeneous states are graded operators on V , i.e., for v ∈ Vk,

v(n) : Vm → Vm+k−n−1.

In particular, let us define the zero mode o(v) of a state of weight wt(v) = k, i.e., v ∈ Vk, as

o(v) = v(wt(v) − 1), (16)

extending to V additively.

MATRIX ELEMENETS ON THE SPHERE

VOAs via rational matrix elements
There is a number of equivalent sets of axioms for vertex operator algebra theory [36]. In [12, 10] it was proven
that one can describe a vertex operator algebra by the set of all its correlation functions. For our purposes here we
require one of these equivalent approaches wherein the properties of a vertex operator algebra are expressed in terms
of properties of matrix elements which turn out to be rational functions of the formal vertex operator parameters. In
this approach vertex operator algebra formal parameters can be taken to be complex numbers with the matrix elements
considered as rational functions on the Riemann sphere, i.e., this corresponds to the genus one Riemann surface case.



Let us first define matrix elements. Assume that our VOA is of CFT-type, i.e.,

V = C1 ⊕ V1 ⊕ . . . .

We define the restricted dual space of V by [10]

V ′ =
⊕
n≥0

V∗n , (17)

where V∗n is the dual space of linear functionals on the finite dimensional space Vn. Let ⟨., .⟩ denote the canonical
pairing between V ′ and V . In what follows prime marks states that belong to the dual space. Define matrix elements
for v′ ∈ V ′, v ∈ V and n vertex operators Y(v1, z1), . . ., Y(vn, zn) by

⟨v′,Y(v1, z1) . . .Y(vn, zn)v⟩. (18)

In particular, chosing v = 1 and v′ = 1′ we obtain the n-point correlation function on the sphere:

F(0)
V (v1, z1; . . . ; vn, zn) = ⟨1′,Y(v1, z1) . . . Y(vn, zn)1⟩. (19)

Here the upper index of F(0) stands for the genus. One can show in general that every matrix element is a homogeneous
rational function of z1, . . . , zn, [10], [4]. Thus the formal parameters of VOA theory can be replaced by complex
parameters on (appropriate subdomains of) the genus zero Riemann sphere CP1.

We illustrate [36] this by considering matrix elements containing one or two vertex operators. Recall from (16)
that for u ∈ Vn,

u(k) : Vm → Vm+n−k−1. (20)

Hence it follows that for v′ ∈ V ′m′ , v ∈ Vm and u ∈ Vn we obtain a monomial

⟨v′,Y(u, z)v⟩ = Cu
v′vzm′−m−n, (21)

where
Cu

v′v = ⟨v′, u(m + n − m′ − 1)v⟩. (22)

Recall now the following formal expansion: for variable x, y we adopt the convention that

(z1 + z2)m =
∑
n≥0

(m
n

)
zm−n

1 zn
2, (23)

i.e., for m < 0 we formally expand in the second parameter z2. Next consider the matrix element of two vertex
operators. We then find

Theorem 0.1 [FHL] Let v′ ∈ V ′m′ , v ∈ Vm, u1 ∈ Vn1 and u2 ∈ Vn2 . Then

⟨v′,Y(u1, z1)Y(u2, z2)v⟩ = f (z1, z2)
zm+n1

1 zm+n2
2 (z1 − z2)n1+n2

, (24)

⟨v′,Y(u2, z2)Y(u1, z1)v⟩ = f (z1, z2)
zm+n1

1 zm+n2
2 (−z2 + z1)n1+n2

, (25)

where f (z1, z2) is a homogeneous polynomial of degree m + m′ + n1 + n2.

As we see from this theorem, the matrix elements (24), (25) are thus determined by a unique homogeneous rational
function which can be evaluated on CP1 in the domains |z1| > |z2| and |z2| > |z1| respectively. Note that properties
(24) and (25) are equivalent to locality of vertex operators Y(u1, z1) and Y(u2, z2) so that the axioms of a VOA can be
alternatively formulated in terms of rational matrix elements [4], [10]. In [10] the canonical description of a vertex
operator algebra in terms of rational functions had been given. In Appendix we recall some auxiliary notions (in
particular, maps ιi1,...,in , and definition of the subring F[z1, . . . , zn]S of the field of rational functions F[z1, . . . , zn])
defined in [10].

Theorem 0.1 can also be generalized for all matrix elements of several variables. Recall the proposition 3.5.1 of
[10]:



Proposition 0.2 For v1, . . . , vn, v ∈ V, and v′ ∈ V ′, with any permutation of (i1, . . . , in) of (1, . . . , n), lies in the
image of the map ι1,...,n:

⟨v′,Y(ui1 , zi1 ) . . .Y(uin , zin )v⟩ = ι1,...,n f (z1, . . . , zn), (26)

where (uniquely determined) element f ∈ F[z1, . . . , zn]S is independent of the permutation and is of the form

f (z1, . . . , zn) =
g(z1, . . . , zn)

n∏
i=1

zri
i
∏
j<k

(z j − zk)s jk

, (27)

for some g(z1, . . . , zn) ∈ F[z1, . . . , zn] and ri, s jk ∈ Z.

Genus zero Zhu reduction
Using the vertex commutator property (14), i.e.,

[u(m),Y(v, z)] =
∑
i≥0

(m
i

)
Y (u(i)v, z) zm−i,

one can also derive [47] a recursive relationship in terms of rational functions between matrix elements for n+1 vertex
operators and a finite sum of matrix elements for n vertex operators. In [47] we find a recurrent formula expressing an
n + 1-point matrix element on the sphere as a finite sum of n-point matrix elements in the following

Lemma 0.3 ([Zhu], Lemma 2.2.1) For v1, . . . , vn ∈ V, and a homogeneous v ∈ V, we find

⟨v′,Y(v1, z1) . . . Y(vn, zn)v⟩ =
n∑

r=2

∑
m≥0

fwt(v1),m(z1, zr) · ⟨v′,Y(v2, z2) . . . Y(v1(m) vr, zr) . . . Y(vn, zn)v⟩

+ ⟨v′, o(v1) Y(v2, z2)...Y(vn, zn)v⟩, (28)

where fwt(v1),m(z1, zr) is a rational function defined by

ιz,w fn,m(z,w) =
∑
j∈N

(n + j
m

)
z−n− j−1wn+ j−1, (29)

fn,m(z,w) =
z−n

m!

(
d

dw

)m wn

z − w
. (30)

CORRELATION FUNCTIONS ON THE TORUS

One would like to ask now for generalizations at higher genus. In order to consider modular-invariance of n-point
functions at genus one, Zhu introduced [47] a second ”square-bracket” VOA (V,Y[, ], 1, ω̃) associated to a given VOA
(V,Y(, ), 1, ω). The new square bracket vertex operators are defined by a change of coordinates, namely

Y[v, z] =
∑
n∈Z

v[n]z−n−1 = Y(qL(0)
z v, qz − 1), (31)

with qz = ez, while the new conformal vector is ω̃ = ω − c
24 1. For v of L(0) weight wt(v) ∈ R and m ≥ 0,

v[m] = m!
∑
i≥m

c(wt(v), i,m)v(i), (32)

i∑
m=0

c(wt(v), i,m)xm =

(
wt(v) − 1 + x

i

)
.

In particular we note that v[0] =
∑
i≥0

(
wt(v)−1

i

)
v(i).



Recall [47] (see also [37, 40, 38, 39]), that at genus one, instead of matrix elements of the form (18), one considers
traces over corresponding vertex operator algebra. Vertex operator algebra formal parameters are associated now with
local coordinates around insertion points on the torus. For v1, . . . , vn ∈ V the genus one n-point function has the form:

F(1)
V (v1, z1; . . . ; vn, zn; τ) = TrV

(
Y(qL(0)

1 v1, q1) . . . Y(qL(0)
n vn, qn) qL(0)−C/24

)
, (33)

for q = e2πiτ and qi = ezi , where τ is the torus modular parameter.
Then the genus one Zhu recursion formula is given by

Theorem 0.4 [Zhu] For any v, v1, . . . , vn ∈ V we find for an n + 1-point function

F(1)
V (v, z; v1, z1; . . . ; vn, zn; τ) =

n∑
r=1

∑
m≥0

Pm+1(z − zr, τ) · F(1)
V (v1, z1; . . . ; v[m]vr, zr; . . . ; vn, zn; τ)

+ F(1)
V (o(v); v1, z1; . . . ; vn, zn; τ) , (34)

where

F(1)
V (o(v); v1, z1; . . . ; vn, zn; τ) = TrV

(
o(v) Y(qL(0)

1 v1, q1) . . .Y(qL(0)
n vn, qn) qL(0)−C/24

)
.

In this theorem Pm(z, τ) denote higher Weierstrass functions [45] defined by

Pm(z, τ) =
(−1)m

(m − 1)!

∑
n∈Z,0

nm−1qn
z

1 − qn . (35)

The higher genus versions of the genus zero and one Zhu reduction procedure and the formula (34) described in
lemma 0.3 and theorem 0.4 are also avalable [24, 46].

CLUSTER STRUCTURE FOR A VERTEX OPERATOR ALGEBRA

Now we on a position to determine a cluster-like algebra structure for a vertex operator algebra. Let us introduce the
cluster structure for a vertex operator algebra V provided by the following data. Fix a vertex operator algebra V . Chose
n-marked points pi, i = 1, . . . , n on a compact Riemann surface [11]. In the vicinity of each marked point pi define a
local coordinate zi with zero at pi. Consider n-tuples v ≡ {v1, . . . , vn}, of arbitrary states vi ∈ V , and local corresponding
vertex operators Y(v, z) ≡ {Y(v1, z1), . . . ,Y(vn, zn)}, with coordinates z ≡ {z1, . . . , zn} around pi, i = 1, . . . , n. We define
a vertex operator cluster algebra seed

(v,Y(v, z), Fn(v, z)) , (36)

where Fn(v, z) ≡ Fn(v1, z1; . . . ; vn, zn) is an n-point correlation function (matrix element (18) for the sphere case) for
n states vi. Now, define the mutation µk(v,m, z):(

v′,Y(v′, z), F′n(v′, z)
)
= µk(v,m, z) (v,Y(v, z), Fn(v, z)) , (37)

of the seed (36) in direction k ∈ 1, . . . , n for v ∈ V , according to the Zhu reduction formula for corresponding Riemann
surface genus, e.g., for the sphere as in (28), for the torus as in (34), etc. Namely, for v, we define v′ as the mutation
of v in direction k ∈ 1, . . . , n as

v′ = µk(v,m, z)v = (v1, . . . , v(m)vk . . . , vn), (38)

for some m ≥ 0. Note that due to the property (8) we get a finite number of terms as a result of the action of v(m) on
vr. For the n-tuple of vertex operators we define

Y(v′, z) = µk(v,m, z)Y(v, z) = (Y(v1, z1), . . . , Y(v(m)vk, zk), . . . ,Y(vn, zn)) . (39)

The mutation

F′n(v′, z) = µk(v,m, z)Fn(v, z), (40)



is defined by summing over mutations in all possible directions with auxiliary functions f (wt v,m, k, z), k ∈ 1, . . . , n
and all m ≥ 0:

F′n(v′, z) = µk(v,m, z)Fn(v1, z1; . . . ; vn, zn)

=

n∑
k=1

∑
m≥0

f (wt v,m, k, z) · Fn(v1, z1; . . . ; 1(m)vk, zk; . . . ; vn, zn) + F̃n(v, z; v, z), (41)

where F̃n(v, z; v, z) denote higher terms in the Zhu reduction formula for a specific genus of a Riemann surfaces used
in the consideration. In particular, for the genus zero case we have f (wt v,m, k, z) = fv,m(z, zk) defined in (29)–(30)
for some m ≥ 0,

F̃n(v, z; v, z) = F(0)
n (o(v); v, z) = ⟨w′, o(v) Y(v1, z1)...Y(vn, zn)w⟩,

while for the genus one Riemann surface we take and f (wt v,m, k, z) = Pm+1(z − zk; τ) given by (35), and

F̃(1)
n (v, z; v, z) = F(1)

n (o(v); v, z) = TrV (o(v)Y(v1, z1) . . . Y(vn, zn)) .

The mutation µk(v,m, z) defined by (38), (39), (41) is an involution, i.e.,

µk(v,m, z)µk(v,m, z) (v,Y(v, z), Fn(v, z)) = (v,Y(v, z), Fn(v, z)) ,

subject a few conditions. As the first condition, one can take v(m)v(m)vk = vk, k = 1, . . . , n for the actions (38–39).
The simplest case, in particular, when v ∈ Vk when v(m) = o(v) ≡ v(wt v−1) (see (16)), then, due to the property (20),
v(m)v(m) : Vm −→ Vm, when k − m − 1 = 0. Secondly, since the vacuum state 1 ∈ V0, and Y(1, z) = IdV (15), we can
take v = 1 in the mutation µk(v,m, z) in order to keep the rank of the resulting cluster matrix Fn(v′, z′). Thus we have

F′n(v, z) = µk(1,m, z)Fn(v1, z1; . . . ; vn, zn)

=

n∑
k=1

∑
m≥0

f (0,m, k, z) · Fn(v1, z1; . . . ; 1(m)vk, zk; . . . ; vn, zn) + F̃n(v, z)

= Fn(1, z; v, z) = Fn(v, z).

Thus, in this case, the mutation is obviously an involution. In more sophisticated cases when v , 1, one can impose
further condionts on vk, k = 1, . . . , n to make (41) an involution.

Note that when we sum in (41) over mutations in all possible directions k ∈ 1, . . . , n and all m ≥ 0, we obtain a
correlation function (matrix element for the sphere) of rank n + 1 (see (28) and (34)) with extra v ∈ V inserted at a
point p with corresponding local coordinate z:

F(g)
n+1(v, z; v1, z1; . . . ; vn, zn; τ) =

n∑
k=1

∑
m≥0

f (wt v,m, k, z) · F(g)
n (v1, z1; . . . ; v(m)vk . . . ; vn, zn; τ) + F̃(g)

n (v, z; v, z). (42)

When we reduce F(g)
n (v1, z1; . . . ; v(m)vk . . . ; vn, zn) in (41) to the partition function F(g)

0 (i.e., the zero point function)
according to the Zhu reduction formulas ((28) or (34)), we obtain multiple action of modes

∏
m≥0

vr(m) on various vk as

well as products of f (wt vr,mr, r, zr) functions as a result of action on zk. In that case we obtain a cluster structure of
infinite type. The cluster algebra structure given by (37)–(40) thus serves as a counterpart for ordinary cluster algebra
structure over a non-commutative variables v1, . . . , vn ∈ V . As we mentioned before, the Zhu reduction formula is
available for genus two correlation functions [24] and supposed to be expandable to higher genus [38, 46]. Thus we
add the superscript (g) in (41). One can use this construction in order to describe a conformal field theory [2, 4, 13]
corresponding to a vertex operator algebra. Starting from the partition function (or the zero-point function) F(g)

0 , we
generate recursively, according the cluster algebra rules (37)–(41), all higher n-point function seeds (n = 1, . . . , n),
extending the zero-rank seed to (36).

We can expect that the cluster algebra structure for a vertex operator algebra is related to ordinary cluster algebra
structure over rational functions F(x1, . . . , xn) via correlation functions on the Riemann sphere. To finish this paper
we conjecture that for a vertex operator algebra V , the cluster algebra structure defined by mutations (37)–(41) of a
seed (36) in provides an ordinary cluster algebra structure over rational functions. Since (under certain conditions)
[47, 33, 36] genus one correlations functions are modular forms [30], a cluster algebra structure (37)–(41) with zi
defined on the torus give us an ”elliptic” version of a cluster algebra over modular forms. One can show for instance
that the cluster algebra for a vertex operator algebra on the sphere generates the cluster algebras of rank one and two
over rational functions.



APPENDIX:

The definition of maps ιi1,...,ın
Here we introduce some auxiliary notions following [10]. Let

S =

 n∑
i=1

aizi, ai ∈ F, ai not all zero

 ⊂ F[z1, . . . , zn], (43)

where F[z1, . . . , zn] is the field of rational functions. Let F[z1, . . . , zn]S be a subring of F[z1, . . . , zn] obtained by invert-
ing the products of elements of S . Let (i1, . . . , in) be a permutation of the set (1, . . . , n). Recursively define maps

ι(i1,...,in) : F[z1, . . . , zn]S −→ F
[[

z1, z−1
1 , . . . , zn, z−1

n

]]
, (44)

by the following rule. For n − 1, define ι1 be the inclusion map. Thus S = {a1z1, a1 ∈ F×}, and F[z1]S = F
[
z1, z−1

1

]
.

Assume we defined the maps ι(i1,...,in−1). Now let us define ι(i1,...,in). Let f (z1, . . . , fn) ∈ F [z1, . . . , zn]S . Then it is of the
form

f (z1, . . . , zn) =
g(z1, . . . , zn)

r∏
k=1

(
n∑

j=2
ak j zi j

)
s∏

l=1

(
n∑

j=1
bl j zi j

) , (45)

where g(z1, . . . , zn) ∈ F [z1, . . . , zn], the denominator is non-vanishing, and bl j , 0, l = 1, . . . , s. Then we expand(
s∏

l=1

(
n∑

j=1
bl j zi j

))−1

as a power series in zi2 , . . . , zin since bl j , 0. Let us call this series h(z1, . . . , zn). Then for each t ∈ Z

the of zt
i in g(z1, . . . , zn)h(z1, . . . , zn) is a polynomial in zi2 , . . . , zin , which we denote by gt(z1, . . . , zn). Since we assume

that the maps ι(i2,...,in)

 g(zi2 ,...,zin )
r∏

k=1

(
n∑

j=2
ak j zi j

)
 are defined let us put

ι(i1,...,in) f (z1, . . . , zn) =
∑
t∈Z

gt(zi2 , . . . , zin )
r∏

k=1

(
n∑

j=2
ak j zi j

) zt
i1 . (46)

For instance, suppose n = 2 and F is algebraically closed. Then all non-vanishing homogeneous polynomials in two
variables are inverted

f (z1, z2) =
g(z1, z2)

zr
i2

s∏
l=1

(
bl1 zi1 + bl2 zi2

) ,
and ιi1,i2 is the expansion in negative powers of zi1 or in positive powers of zi2 . The maps ιi1,...,in are injective.
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