Optical Properties of Solids: Lecture 2

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) zollner@nmsu.edu or zollner@fzu.cz

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility - CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.
$\star^{\star} \star_{\star}^{\star}$
$\star \star_{\star}$
\star^{\star}

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

Optical Properties of Solids: Lecture 2

Crystal structures
Point and space groups
Wyckoff positions
Classification of optical vibrations

Solid State Physics (crystalline)

Crystal Structure (Point \& Space Group)

References: Crystal Structures

- Start with a good text on solid state physics:
- C. Kittel: Solid-State Physics (Wiley, 2005)
- N. Ashcroft and N. D. Mermin: Solid-State Physics (Harcourt, 1976)
- M. Dresselhaus: Solid-State Properties (Springer, 2018)
- D.W. Snoke: Solid-State Physics (Addison-Wesley, 2008)
- J.F. Nye: Physical Properties of Crystals (Clarendon, 1957)
- G.S. Rohrer: Structure and Bonding in Materials (Cambridge, 2004)
- M. Dresselhaus: Group Theory (Springer, 2008)
- S. J. Joshua: Symmetry Principles and Magnetic Symmetry in Solid State Physics (Adam Hilger, 1991)
- M. Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, 1964)
- T. Hahn: International Tables for Crystallography, Vol A, Space Group Symmetry (Springer, 2005)
- Bilbao Crystallographic Server, http://www.cryst.ehu.es/
- VESTA: Visualization for Electronic and Structural Analysis (program)

Symmetry and Conservation Laws (Noether)

- For every symmetry of the Hamiltonian, there is a conservation law.
- Classical physics and quantum mechanics: 10 integrals of motion
- Time-invariance (Hamiltonian does not depend on time):

Conservation of energy

- Translational invariance (Hamiltonian does not depend on position):

Conservation of momentum

- Rotational invariance: Lie Group SO(3) (Hamiltonian does not depend on angle): Conservation of angular momentum
- Galilei transformation: $\mathbf{G}=\mathrm{mr}$-tp is conserved for a free particle.
- Crystalline solids:
- Energy is still conserved, if the Hamiltonian does not depend on time.
- Translational symmetry is broken, but crystal is periodic:

Conservation of crystal momentum (Bloch's theorem) Need to consider Umklapp processes (reciprocal lattice vectors)

- Point group symmetry (rotations/reflections): subgroup of $\mathrm{O}(3)$

Crystal structure breaks rotational symmetry (1, 2, 3, 4, 6-fold rotations)
Crystal-field splitting, Selection rules (allowed and forbidden transitions)

Translational Symmetry

- A Bravais lattice is a regular array of points (lattice translations)

$$
\vec{T}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}=i \vec{a}+j \vec{b}+k \vec{c}
$$

where n_{1}, n_{2}, and n_{3} (or i, j, k) are integers (coordinates) and $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} are the primitive translations, which define the unit cell.

- The lattice has the following properties (Abelian cyclical group):
- The sum and difference of translations is also a translation.
- There is a translation with zero length.
- For each translation, there is an inverse (found by inversion).
- Translations commute with each other (Abelian).
- Cyclical: Periodic boundary conditions.

Unit cell:
 Usually $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$
 Angle α across a

Reciprocal Lattice

- A Bravais lattice is a regular array of points (lattice translations)

$$
\vec{T}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}
$$

where n_{1}, n_{2}, and n_{3} (or i, j, k) are integers (coordinates) and a_{1}, a_{2}, and \mathbf{a}_{3} are the primitive translations, which define the unit cell.

- Reciprocal Lattice: $\vec{G}=m_{1} \vec{b}_{1}+m_{2} \vec{b}_{2}+m_{3} \vec{b}_{3}$

Vectors in the primitive cell

$$
\vec{r}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}
$$

Vectors in the reciprocal cell

$$
\begin{aligned}
& \vec{k}=y_{1} \vec{b}_{1}+y_{2} \vec{b}_{2}+y_{3} \vec{b}_{3} \\
& 0 \leq x_{i}, y_{i} \leq 1
\end{aligned}
$$

Or in Wigner/Seitz cell or BZ

The reciprocal lattice describes all plane waves in the lattice.

Representations in Quantum Mechanics

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H .
- The allowed energies are $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$
- The eigenstate with energy E_{i} has degeneracy g_{i}.

The eigenfunctions $\psi_{1}, \psi_{2}, \ldots, \psi_{\text {gi }}$ for this eigenstate form a vector space.

- If the Hamiltonian is invariant under a group of symmetry operations R, then the vector spaces of eigenfunctions for the eigenstates are also invariant under this symmetry operation.
- Noether: A representation is a vector space (of eigenfunctions) together with an operation which tells us how the eigenfunctions transform under the symmetry operations:

$$
R \psi_{\mathrm{j}}=\Sigma \mathrm{C}_{\mathrm{ij}}(\mathrm{R}) \psi_{\mathrm{i}} \quad \text { character: } \chi(\mathrm{R})=\operatorname{Trace}\left(\mathrm{C}_{\mathrm{ij}}\right)
$$

- But: This definition is too restrictive for quantum mechanics, since two wave functions describe the same state, if they only differ by a complex factor.
- Classes of wave functions:

$$
[\psi]=\left[r e^{i \phi} \psi\right]
$$

Bloch's Theorem

- The Bravais lattice is a regular array of points (lattice translations)

$$
\vec{T}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}
$$

- What can we say about wave functions $\psi(r)$ for electrons or vibrations?
- Since the translation group is Abelian+cyclical (translations commute, periodic boundary conditions), irreducible representations are 1-D.
- There are as many irreducible representations (labeled with a reciprocal space vector \mathbf{k}) as there are lattice vectors \mathbf{T}.
- \mathbf{k} is inside the primitive cell of the reciprocal lattice (or first Brillouin zone).
- Therefore, wave functions $\psi(\mathbf{r})$ and $\psi(\mathbf{r}+\mathbf{T})$ only differ by a complex factor

$$
\psi(\vec{r}+\vec{T})=e^{i \vec{k} \cdot \vec{T}} \psi(\vec{r})
$$

- This implies that any wave function can written as a product of a plane wave and a periodic part:

$$
\psi(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u_{n, \vec{k}}(\vec{r})
$$

\mathbf{k} is called crystal momentum. Good quantum number (conserved). $\mathbf{k}+\mathbf{G}$ is the same as \mathbf{k} (Umklapp process).

Translational and Rotational Symmetry

- Not every rotational symmetry is compatible with translational invariance.
- For example, five-fold and seven-fold symmetries cannot occur in crystals.
- Only the following rotational symmetries can occur:
- 0° or 360°
- 60°
- 90°
- 120°
- 180°
n-fold rotation:
Rotation by angle $\theta=2 \pi / n$
$n=1,2,3,4,6$

six-fold four-fold three-fold two-fold

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Proof: Translational and Rotational Symmetry

For a rotation about z-axis with angle $\theta=2 \pi / n$, show that $n=1,2,3,4$, or 6 .
Step 1: There is a translation vector in $x y$-plane perpendicular to z-axis.
Assume \mathbf{T} is any translation vector.
Then $\mathbf{T}^{\prime}=R(\theta) \mathbf{T}$ is also a translation vector.
The difference $\mathbf{T}-\mathbf{T}^{\prime}$ is a translation vector perpendicular to the z-axis.
Step 2: Assume that \mathbf{R} is shortest translation vector perpendicular to \mathbf{z}. $\mathbf{R}^{\prime}=\mathbf{R}(\theta) \mathbf{R}$ and $\mathbf{R}^{\prime}-\mathbf{R}$ also translation vectors perpendicular to z-axis. See Figure. This implies that $\mathbf{R}-\mathbf{R}$ ' must be longer than \mathbf{R}.

$$
\begin{gathered}
2 R \sin \frac{\pi}{n} \geq R \\
n \leq 6 \\
n=1,2,3,4,6
\end{gathered}
$$

Exclude five-fold symmetry ($\mathrm{n}=5$) with specific argument.

See M. Tinkham, Group Theory

Six Crystal Families, Seven Crystal Systems

- Not every rotational symmetry is compatible with translational invariance.
- Only one-, two-, three, four-, and six-fold symmetries occur.
- Therefore, we have six crystal families (seven crystal systems).

Centered Bravais Lattices

- Face-centered, body-centered, base-centered Bravais Lattices
- Primitive cell has low symmetry, but centered Bravais lattice symmetry is higher (larger conventional cell).

SC: 1 point/cell BCC: 2 points/cell FCC: 4 points/cell

Face Centered Cubic Lattice

Conventional Unit Cell (Full Cube)

Primitive Lattice Vectors

$$
\begin{aligned}
& a_{1}=(1 / 2) a(0,1,1) \\
& a_{2}=(1 / 2) a(1,0,1) \\
& a_{3}=(1 / 2) a(1,1,0)
\end{aligned}
$$

FCC

One half of an atom

Fourteen Bravais Lattices

Bravais lattice	Parameters	Simple (P)	$\begin{gathered} \hline \text { Volume } \\ \text { centered (I) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { centered (C) } \end{gathered}$	Face centered (F)	simple
Triclinic	$\begin{gathered} a_{1} \neq a_{2} \neq a_{3} \\ \alpha_{12} \neq \alpha_{23} \neq \alpha_{31} \end{gathered}$					body-centered face-centered base-centered
Monoclinic	$\begin{gathered} a_{1} \neq a_{2} \neq a_{3} \\ \alpha_{23}=\alpha_{31}=90^{\circ} \\ \alpha_{12} \neq 90^{\circ} \end{gathered}$					
Orthorhombic	$\begin{gathered} a_{1} \neq a_{2} \neq a_{3} \\ \alpha_{12}=\alpha_{23}=\alpha_{31}=90^{\circ} \end{gathered}$					
Tetragonal	$\begin{gathered} a_{1}=a_{2} \neq a_{3} \\ \alpha_{12}=\alpha_{23}=\alpha_{31}=90^{\circ} \end{gathered}$					
Trigonal	$\begin{gathered} a_{1}=a_{2}=a_{3} \\ \alpha_{12}=\alpha_{23}=\alpha_{31}<120^{\circ} \end{gathered}$					become fourteen (14) Bravais lattices with
Cubic	$\begin{gathered} a_{1}=a_{2}=a_{3} \\ \alpha_{12}=\alpha_{23}=\alpha_{31}=90^{\circ} \end{gathered}$					
Hexagonal	$\begin{gathered} a_{1}=a_{2} \neq a_{3} \\ \alpha_{12}=120^{\circ} \\ \alpha_{23}=\alpha_{31}=90^{\circ} \end{gathered}$					

Crystal Structures

- Crystal=Lattice+Basis
- A crystal structure is defined by
- one of 14 Bravais lattices
- basis vectors (coordinates of atoms within the cell): Wyckoff positions

- 230 space groups (rotations, reflections, inversion, etc, plus translations)
- 32 point groups (elements of space groups, with translatinns set th zern)
- Only a few elements have just one atom per Bravais lattice cell.
- BCC metals: $\alpha-\mathrm{Fe}, \mathrm{V}, \mathrm{Nb}, \mathrm{Ta}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{Na}$, etc (8-fold coordination)
- FCC metals: Al, Cu, Au, Pb, Ni, Pt, Ag, etc (12-fold coordination)
- HCP: is not a Bravais lattice

Examples of Crystal Structures

"Strukturbericht" Notation

Table 4.2. The cubic close packed structure, $C u, A 1$.

Formula unit		Cu, copper Space group:
Cell dimensions:	FCC	Fm $\overline{3} m$ (no. 225) $a=3.6147 \AA$
Cell contents:		4 formula units
Atomic positions:		Cu in 4(a) (0,0,0+F)
Table 4.3. The body centered cubic structure, W, A2.		

Letter followed by number

A:
 B:

C:
D:
E:
Lower number, simpler structure.

Table 4.4. The hexagonal close packed structure, Mg, A3.

Formula unit		Mg, magnesium
Space group:		$\mathrm{P} \mathrm{6} /{ }^{\prime}$ m m (no. 194)
Cell dimensions:	HCP	$a=3.2094 \AA ; c=5.2105 \AA$
Cell contents:		2 formula units
Atomic positions*:		Mg in 2(c) $\quad(1 / 3,2 / 3,1 / 4) ;(2 / 3,1 / 3,3 / 4)$

"Strukturbericht" Notation

Table 4.17. The rock salt structure, sodium chloride, B1.

Formula unit	NaCl , sodium chloride	
Space group:	$\mathrm{Fm} \overline{3} m($ no. 225$)$	Many materials have the
Cell dimensions:	$a=5.6402 \AA$	same crystal structure.
Cell contents:	4 formula units	

Examples:

compound	$a(\AA)$	compound	$a(\AA)$	compound	$a(\AA)$	compound	$a(\AA)$
MgO	4.213	MgS	5.200	LiF	4.0270	KF	5.347
CaO	4.8105	CaS	5.6948	LiCl	5.1396	KCl	6.2931
SrO	5.160	SrS	6.020	LiBr	5.5013	KBr	6.5966
BaO	5.539	BaS	6.386	LiI	6.00	KI	7.0655
TiO	4.177	$\alpha \mathrm{MnS}$	5.224	LiH	4.083	RbF	5.6516
MnO	4.445	MgSe	5.462	NaF	4.64	RbCl	6.5810
FeO	4.307	CaSe	5.924	NaCl	5.6402	RbBr	6.889
CoO	4.260	SrSe	6.246	NaBr	5.9772	RbI	7.342
NiO	4.1769	BaSe	6.600	NaI	6.473	AgF	4.92
CdO	4.6953	CaTe	6.356	NaH	4.890	AgCl	5.549
SnAs	5.7248	SrTe	6.660	ScN	4.44	AgBr	5.7745
TiC	4.3285	BaTe	7.00	TiN	4.240	CsF	6.014
UC	4.955	LaN	5.30	UN	4.890	LuSb	6.0555

Schoenflies notation for 32 point groups

Stereographic projections of 32 point groups

Non-Symmorphic Space Groups

- 32 point groups (all crystal symmetries with translation set to zero)
- 230 space groups
- 73 Symmorphic space groups:

Point group is a subgroup of the space group

- 157 Non-symmorphic space groups:

Glide plane:
reflection followed by translation Some point group elements have non-primitive translations. Screw axes and glide planes.

Diamond structure has two equivalent sublattices. Inversion must be followed by glide along (111). Non-primitive translation by a/4(1,1,1). This is called the d (diagonal, diamond) glide. International Tables list non-primitive translations.

Non-Symmorphic Space Groups: Screw axis

- 32 point groups (all crystal symmetries with translation set to zero)
- 230 space groups
- 73 Symmorphic space groups:

Point group is a subgroup of the space group

- 157 Non-symmorphic space groups:

Some point group elements have non-primitive translations.

> Screw axis:
> C_{n} rotation followed by translation along the axis
${ }_{\text {s1 }}$ space group ${ }_{9, \text { Optical Properties ol }}$ point group ${ }_{23}$

International Tables of Crystallography

- Notations for 230 Space Groups
- Space number from 1 to 230 .
- International Notation
- Schoenflies symbol with superscript

International Tables for Crystallography (2000). Vol. A, Space group		107, pp. 548-551.
$R \overline{3} c$	$D_{3 d}^{6}$	$\overline{3} m$
No. 167	$R \overline{3} 2 / c$	

$R \overline{3} c$
$D_{3 d}^{6}$
No. 167
R $\overline{3} 2 / c$
$\overline{3} m$

Trigonal

Wyckoff positions

General:

h kil : $-h+k+l=3 n$
$h k i 0:-h+k=3 n$
$h h \overline{2 h} l: l=3 n$
$h \bar{h} 0 l: h+l=3 n, l=2 n$
$000 l: l=6 n$
$h \bar{h} 00: h=3 n$
Special: as above, plus
no extra conditions
hkil : $l=2 n$
hkil : $l=2 n$
$h k i l: l=2 n$
hkil : $l=2 n$

Symmetry operations

Stefan Zollner, February 2019, Optical Properties

Positions

Multiplicity,
Wyckoff letter, Site symmetry
$36 \quad f \quad 1$

18	e	.2	$x, 0, \frac{1}{4}$	$0, x, \frac{1}{4}$	$\bar{x}, \bar{x}, \frac{1}{4}$	$\bar{x}, 0, \frac{3}{4}$	$0, \bar{x}, \frac{3}{4}$	$x, x, \frac{3}{4}$
18	d	$\overline{1}$	$\frac{1}{2}, 0,0$	$0, \frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
12	c	3.	$0,0, z$	$0,0, \bar{z}+\frac{1}{2}$	$0,0, \bar{z}$	$0,0, z+\frac{1}{2}$		
6	b	3.	$0,0,0$	$0,0, \frac{1}{2}$				
6	a	32	$0,0, \frac{1}{4}$	$0,0, \frac{3}{4}$				

Bilbao Crystallographic Server

http://www.cryst.ehu.es
LaAlO_{3}
Wyckoff Positions of Group 167 ($R-3 c$) [hexagonal axes]

Character Table of the group $D_{3 d}(-3 m)^{*}$

$\mathrm{D}_{3 \mathrm{~d}}(-3 \mathrm{~m})$	\#	1	3	2-10	-1	-3	m_{1-10}	functions
Mult.	-	1	2	3	1	2	3	
A_{19}	$\Gamma_{1}{ }^{+}$	1	1	1	1	1	1	$x^{2}+y^{2}, z^{2}$ Raman
$\mathrm{A}_{2 \mathrm{~g}}$	$\Gamma_{2}{ }^{+}$	1	1	-1	1	1	-1	J_{z}
E_{g}	$\Gamma_{3}{ }^{+}$	2	-1	0	2	-1	0	$\left(x^{2}-y^{2}, x y\right),(x z, y z),\left(J_{x,}, J_{y}\right)$ Raman
A_{14}	Γ_{1}	1	1	1	-1	-1	-1	
$\mathrm{A}_{2 \mathrm{u}}$	Γ_{2}	1	1	-1	-1	-1	1	
E_{u}	Γ_{3}	2	-1	0	-2	1	0	(x, y)

Also:
 Character Table for Double Groups Symmetries of Physical Tensors Raman Tensors

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Nye: Physical Properties of

Crystals

$$
\vec{D}=\varepsilon \vec{E}
$$

D Dielectric displacement
E electric field
ε dielectric tensor

For crystal class $-3 m$, the dielectric tensor

- has two independent diagonal components.
- off-diagonal components are zero.

Also: Stress/strain, magnetic, piezo, ... Many different tensor properties.

More Examples of Crystal Structures: Rutile TiO_{2}

Table 4.19. The rutile structure, titanium dioxide, C4.

Formula unit	TiO_{2}, titanium dioxide	
Space group: Cell dimensions:	$\begin{aligned} & \mathrm{P} 4_{2} / m n m \text { (no. 136) } \\ & a=4.594 \AA, c=2.958 \AA \end{aligned}$	Internal parameter x
Cell contents:	2 formula units	
Atomic positions:	Ti in (2a) mmm (0, 0,) ; (1/2, 1/2, 1/2)
	O in (4f) $m 2 m \quad(x$,	0); ($\bar{x}, \bar{x}, 0)$
		$x, 1 / 2-x, 1 / 2),(1 / 2-x, 1 / 2+x, 1 / 2)$

Examples

Table 4.22. The spinel structure, magnesium aluminate, $\mathrm{H1}_{1}[13]$.

Formula unit	$\mathrm{MgAl}_{2} \mathrm{O}_{4}$, magnesium aluminate	
Space group:	$\mathrm{F} d \overline{3} m(\mathrm{no} .227)$	
Cell dimensions:	$a=8.086$	
Cell contents:	8 formula units	
Atomic positions:	Mg in (8a) $\overline{4} 3 m$	$(0,0,0) ;(1 / 4,1 / 4,1 / 4)+\mathrm{F}$
	Al in (16c) $\quad \overline{3} m$	$(5 / 8,5 / 8,5 / 8) ;(5 / 8,7 / 8,7 / 8) ;$
		$(7 / 8,5 / 8,7 / 8) ;(7 / 8,7 / 8,5 / 8)+\mathrm{F}$
	O in (32e) $\quad 3 m$	$(x, x, x) ;(x, \bar{x}, \bar{x}) ;(1 / 4-x, 1 / 4-x, 1 / 4-x) ;$
		$(1 / 4-x, x+1 / 4, x+1 / 4) ;(\bar{x}, \bar{x}, x) ;(\bar{x}, x, \bar{x}) ;$
	$(x+1 / 4,1 / 4-x, x+1 / 4) ;(x+1 / 4, x+1 / 4$,	
		$1 / 4-x)+\mathrm{F} ; x=3 / 8$

Examples

compound	$a(\AA)$	x	compound	$a(\AA)$	x
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	8.086	0.387	$\mathrm{CdMn}_{2} \mathrm{O}_{4}$	8.22	
$\mathrm{MgTi}_{2} \mathrm{O}_{4}$	8.474		$\mathrm{CdFe}_{2} \mathrm{O}_{4}$	8.69	
$\mathrm{MgV}_{2} \mathrm{O}_{4}$	8.413	0.385	$\mathrm{CdGe}_{2} \mathrm{O}_{4}$	8.39	
$\mathrm{MgCr}_{2} \mathrm{O}_{4}$	8.333	0.835	$\mathrm{CdRh}_{2} \mathrm{O}_{4}$	8.781	
$\mathrm{MgMn}_{2} \mathrm{O}_{4}$	8.07	0.385	$\mathrm{MgYb}_{2} \mathrm{~S}_{4}$	10.957	
$\mathrm{MgRh}_{2} \mathrm{O}_{4}$	8.530		$\mathrm{CaIn}_{2} \mathrm{~S}_{4}$	10.774	<0.393
$\mathrm{MnTi}_{2} \mathrm{O}_{4}$	8.600		$\mathrm{MnCr}_{2} \mathrm{~S}_{4}$	10.129	
$\mathrm{MnV}_{2} \mathrm{O}_{4}$	8.522	0.388	$\mathrm{FeCr}_{2} \mathrm{~S}_{4}$	9.998	
$\mathrm{MnCr}_{2} \mathrm{O}_{4}$	8.437		$\mathrm{CoCr}_{2} \mathrm{~S}_{4}$	9.934	
$\mathrm{Mn}_{3} \mathrm{O}_{4}$	8.13		$\mathrm{CoRh}_{2} \mathrm{~S}_{4}$	9.71	
$\mathrm{MnRh}_{2} \mathrm{O}_{4}$	8.613		$\mathrm{CuTi}_{2} \mathrm{~S}_{4}$	9.880	0.382
$\mathrm{FeCr}_{2} \mathrm{O}_{4}$	8.377		$\mathrm{CuV}_{2} \mathrm{~S}_{4}$	9.824	0.384
$\mathrm{CoAl}_{2} \mathrm{O}_{4}$	8.105	0.390	$\mathrm{CuCr}_{2} \mathrm{~S}_{4}$	9.629	0.381
$\mathrm{CoV}_{2} \mathrm{O}_{4}$	8.407		$\mathrm{CuRh}_{2} \mathrm{~S}_{4}$	9.72	
$\mathrm{CoCr}_{2} \mathrm{O}_{4}$	8.332		$\mathrm{ZnAl}_{2} \mathrm{~S}_{4}$	9.988	0.384
$\mathrm{CoMn}_{2} \mathrm{O}_{4}$	8.1		$\mathrm{ZnCr}_{2} \mathrm{~S}_{4}$	9.983	
$\mathrm{Co}_{3} \mathrm{O}_{4}$	8.083		$\mathrm{CdCr}_{2} \mathrm{~S}_{4}$	10.207	0.375
$\mathrm{CoRh}_{2} \mathrm{O}_{4}$	8.495		$\mathrm{CdIn}_{2} \mathrm{~S}_{4}$	10.797	0.386
$\mathrm{NiCr}_{2} \mathrm{O}_{4}$	8.248		$\mathrm{HgCr}_{2} \mathrm{~S}_{4}$	10.206	0.392
$\mathrm{NiRh}_{2} \mathrm{O}_{4}$	8.36		$\mathrm{HgIn}_{2} \mathrm{~S}_{4}$	10.812	<0.403
$\mathrm{CuCr}_{2} \mathrm{O}_{4}$	8.532		$\mathrm{CuCr}_{2} \mathrm{Se}_{4}$	10.365	0.380
$\mathrm{CuMn}_{2} \mathrm{O}_{4}$	8.33	0.390	$\mathrm{ZnCr}_{2} \mathrm{Se}_{4}$	10.443	0.378
$\mathrm{CuRh}_{2} \mathrm{O}_{4}$	8.702		$\mathrm{CdCr}_{2} \mathrm{Se}_{4}$	10.721	0.383
$\mathrm{ZnAl}_{2} \mathrm{O}_{4}$	8.086		$\mathrm{CuCr}_{2} \mathrm{Te}_{4}$	11.049	0.379

Examples of Crystal Structures: Spinel

Spinel $\mathrm{AB}_{2} \mathrm{O}_{4}$
 A and B can be the same (Co) Normal:
 $\mathrm{B}^{1}+\mathrm{B}^{2}$ octahedral, A tetrahedral Inverse:

$A+B^{1}$ octahedral, B^{2} tetrahedral
:ture $2 \quad 28$

Table 4.28. The perovskite structure, calcium titanate, $E 2_{r}$.

Formula unit Space group: Cell dimensions: Cell contents: Atomic positions:		CaTiO_{3}, calcium titanate$\mathrm{P} m \overline{3} m$ (no. 221)$a=3.84 \AA$1 formula unit per cellTi in (1a) $m \overline{3} m$ $(0,0,0)$ Ca in (1b) $m \overline{3} m$ $(1 / 2,1 / 2,1 / 2)$ O in (3d) $4 / m m m$ $(0,0,1 / 2) ;(0,1 / 2,0) ;(1 / 2,0,0)$					
Examples							
compound	$a(\AA)$	compound	$a(\AA)$	compound	$a(\AA)$	compound	$a(\AA)$
BaCeO_{3}	4.397	KNbO_{3}	4.007	PrAlO_{3}	3.757	AgZnF_{3}	3.98
BaTiO_{3}	4.012	KTaO_{3}	3.9858	PrCrO_{3}	3.852	CsCaF_{3}	4.552
BaMoO_{3}	4.0404	LaAlO_{3}	3.778	PrFeO_{3}	3.887	$\mathrm{CsCdBr}{ }_{3}$	5.33
BaPbO_{3}	4.273	LaCrO_{3}	3.874	PrGaO_{3}	3.863	CsCdCl_{3}	5.20
BaPrO_{3}	4.354	LaFeO_{3}	3.920	PrMnO_{3}	3.82	CsHgBr_{3}	5.77
BaTiO_{3}	4.0118	LaGaO_{3}	3.874	PrVO_{3}	3.89	CsPbCl_{3}	5.605
BaZrO_{3}	4.1929	LaRhO_{3}	3.94	SmAlO_{3}	3.734	CsPbBr_{3}	5.874
CaTiO_{3}	3.84	LaTiO_{3}	3.92	SmCoO_{3}	3.75	KCdF_{3}	4.293
CaVO_{3}	3.76	LaVO_{3}	3.99	SmCrO_{3}	3.812	KCOF_{3}	4.069
CeAlO_{3}	3.772	$\mathrm{Lix}_{\mathrm{x}} \mathrm{WO}_{3}$	3.72	SmFeO_{3}	3.845	KFeF_{3}	4.122
DyMnO ${ }_{3}$	3.70	NaAlO_{3}	3.73	SmVO_{3}	3.89	KMgF_{3}	3.973
EuAlO_{3}	3.725	NaTaO_{3}	3.881	SrFeO_{3}	3.869	KMnF_{3}	4.190
EuCrO_{3}	3.803	NaWO_{3}	3.8622	SrMoO_{3}	3.9751	KNiF_{3}	4.012
EuFeO_{3}	3.836	NdAlO_{3}	3.752	SrTiO_{3}	3.9051	KZnF_{3}	4.055
EuTiO_{3}	3.897	NdCoO_{3}	3.777	SrZrO_{3}	4.101	RbCoF_{3}	4.062
GdAlO_{3}	3.71	NdCrO_{3}	3.835	YAlO_{3}	3.68	RbCaF_{3}	4.452
GdCrO_{3}	3.795	NdFeO_{3}	3.870	YCrO_{3}	3.768	RbMnF_{3}	4.250
GdFeO_{3}	3.820	NdMnO_{3}	3.80	YFeO_{3}	3.785	TlCoF_{3}	4.138

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

A can be organic molecule. Perovskite solar cells.

Examples of Crystal Structures: Perovskite

ABX_{3}

Drawing Crystal Structures with VESTA

Download: http://jp-minerals.org/vesta Copy to "Program Files" directory. Download tutorial and example files.

Search for the crystal you want (say SrRuO_{3}) Download+open crystal metadata (*.CIF etc) Calculate x-ray diffraction pattern.

SrRuO_{3}

$a=5.58 \AA, b=7.84 \AA, c=5.54 \AA$ $\alpha=\beta=\gamma=90^{\circ}$ orthorhombic P Space Group 62 Pnma or $D_{2 h}{ }^{16}$ Four formula units per cell Wyckoff positions
Sr (4c) 0.43750 .250 .0154 Ru (4a) 000
O1 (8d) 0.19880 .05280 .3044
O2 (4c) 0.53230 .250 .5996

Classification of Lattice Vibrations ($\mathbf{k}=0$)

Long-wavelength (zone-center) lattice vibrations can be

- Infrared-active (transform like x, y, z)
- Raman-active (transform like $x y, y z, z x$ or x^{2}, y^{2}, z^{2})
- Silent
- Transformation property can be found from point group character table.

If there are N atoms per primitive cell, there are 3 N degrees of freedom.

- 3 acoustic phonons (translation of crystal), zero energy
- 3(N-1) optical phonons

Find representations for optical phonons?

Need to know:

- Bravais lattice+basis, point group, space group
- Wyckoff positions (where are the atoms?)
- How do the symmetry operations act on the atoms? Check International Tables.
- Call N_{R} the number of invariant atoms for symmetry operator R
- Calculate character

$$
\chi(R)=N_{R}(\operatorname{det} R+2 \cos \phi)
$$

- Decompose $\chi(\mathrm{R})$ into irreducible representations (using characters).

See Dresselhaus, Dresselhaus, and Jorio, Group Theory (Springer, 2008)

Classification of Phonons in Metal Oxides

Space Group

 Wyckoff positions
O_{h}^{7} or $F d 3 m$

$$
\chi(R)=N_{R}(\operatorname{det} R+2 \cos \phi)
$$

 $\Gamma\left(D_{3 d}^{6}\right)=2 A_{1 u}+3 A_{2 g}+A_{1 g}+3 A_{2 u}+4 E_{g}+5 E_{u} \quad \Gamma\left(\mathrm{O}_{h}^{7}\right)=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{T}_{1 \mathrm{~g}}+3 \mathrm{~T}_{2 g}+2 \mathrm{~A}_{2 \mathrm{u}}+2 \mathrm{E}_{\mathrm{u}}+4 \mathrm{~T}_{1 \mathrm{u}}+2 \mathrm{~T}_{2 \mathrm{u}}$

Origin of the Spin in Quantum Mechanics

- "The spin is a purely relativistic effect because it is derived from the Dirac equation" (not true!).
- In my opinion, the spin is derived from the unknown phase of the wave function in non-relativistic quantum mechanics.
- Mathematical theorem: "The finite-dimensional projective representations of a compact Lie Group are identical to the representations of its universal covering group."
- We need to take a few minutes to understand what this means.

Wikipedia: Look up "Projective Representation"

- Wahrheit und Klarheit sind komplementär.
(Attributed to Niels Bohr)
Truth and clarity are mutually exclusive.

Representations in Quantum Mechanics

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H .
- The allowed energies are $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$
- The eigenstate with energy E_{i} has degeneracy g_{i}.

The eigenfunctions $\psi_{1}, \psi_{2}, \ldots, \psi_{\text {gi }}$ for this eigenstate form a vector space.

- If the Hamiltonian is invariant under a group of symmetry operations R, then the vector spaces of eigenfunctions for the eigenstates are also invariant under this symmetry operation.
- Noether: A representation is a vector space (of eigenfunctions) together with an operation which tells us how the eigenfunctions transform under the symmetry operations:

$$
R \psi_{\mathrm{j}}=\Sigma \mathrm{C}_{\mathrm{ij}}(\mathrm{R}) \psi_{\mathrm{i}} \quad \text { character: } \chi(\mathrm{R})=\operatorname{Trace}\left(\mathrm{C}_{\mathrm{ij}}\right)
$$

- But: This definition is too restrictive for quantum mechanics, since two wave functions describe the same state, if they only differ by a complex factor.
- Classes of wave functions:

$$
[\psi]=\left[r e^{i \phi} \psi\right]
$$

Projective Representations

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H .
- The allowed energies are E_{1}, E_{2}, \ldots
- The eigenstate with energy E_{i} has degeneracy g_{i}.

The classes of eigenfunctions $\left[\psi_{1}\right],\left[\psi_{2}\right], \ldots,\left[\psi_{g i}\right]$ form a vector space.

- If the Hamiltonian is invariant under a group of symmetry operations R, then the vector spaces of classes of eigenfunctions for the eigenstates are also invariant under this symmetry operation.
- A projective representation is a vector space (of classes of eigenfunctions) together with an operation which tells us how the classes of eigenfunctions transform under the symmetry operations:

$$
\mathrm{R}\left[\psi_{\mathrm{j}}\right]=\Sigma \mathrm{C}_{\mathrm{ij}}\left[\psi_{\mathrm{i}}\right]
$$

- The coefficients C_{ij} are only defined up to a complex factor.

Introduction to Algebraic Topology

The finite-dimensional projective representations of a compact Lie Group are identical to the representations of its universal covering group.

Compact: Each open cover has a finite subcover. (=>closed and bounded)
 sphere

torus
(doughnut)

Klein bottle

Möbius loop

Connected Spaces

A topological space is called connected, if it cannot be represented as a union of two or more disjoint nonempty open subsets.

For any two points, I can find a path connecting the two points.

Simply Connected Spaces

A topological space is called simply connected, if every closed loop can be contracted into a point.

The sphere is simply connected, but the torus is not.

The colored paths in the torus cannot be deformed into a point.

Fundamental group $\mathbf{Z x Z}$ (winding number)

Simply Connected Spaces

A topological space is called simply connected, if every closed loop can be contracted into a point.
A and B are simply connected.

C and D are multiply connected.

Karlovy Vary cup has two holes (top and bottom) in its straw handle.

Universal Covering Space

Problem statement:

SU(n) group special unitary matrices: simply connected.
SO(n) group of special orthogonal matrices: multiply connected fundamental group $\mathbf{Z} / 2=\{0,1\}$ for $n \geq 3$ (4π rotation)

Universal covering space:

If X is a topological space that is path connected, locally path connected, and locally simply connected, then it has a simply connected universal covering space.

Examples:

Circle:
Torus:
SO(3):
$\mathrm{U}(\mathrm{n})$:
infinitely long line (spiral) two-dimensional plane SU(2)
SU(n)xR

Projective Representations of SO(3)

Rotational SO(3) invariance of a Hamiltonian implies that angular momentum is conserved. Every angular momentum state belongs to a projective representation of SO(3), i.e., a representation of SU(2).

SO(3)	E	$R(\phi)$
$\Gamma^{l}: Y_{l m}(\theta, \varphi)$	$2 \mathrm{l}+1$	$\sin [(2 l+1) \varphi / 2] / \sin (\phi / 2)$
$\mathrm{I}=0(\mathrm{~s})$	1	1
$\mathrm{I}=1$ (p)	3	$\sin [3 \varphi / 2] / \sin (\phi / 2)$
$\mathrm{I}=2$ (d)	5	$\sin [5 \varphi / 2] / \sin (\phi / 2)$
$\mathrm{I}=3$ (f)	7	$\sin [7 \varphi / 2] / \sin (\phi / 2)$
etc.		
$\mathrm{I}=1 / 2$	2	$\sin [\varphi] / \sin (\phi / 2)$
$\mathrm{I}=3 / 2$	4	$\sin [2 \varphi] / \sin (\phi / 2)$
$\mathrm{I}=5 / 2$	6	$\sin [3 \varphi] / \sin (\phi / 2)$
etc.		

Double-group

Integral angular momentum

Half-integral angular momentum
Extra representations

Double Groups and Extra Reps for Point Groups

We also need integral and half-integral representations for point groups and space groups. The X-point in the diamond structure is special, where all levels are doubly-degenerate (topological protection).

All tables at http://www.cryst.ehu.es
Also R.J. Elliot, Phys. Rev. 96, 280 (1954).

Half-integral angular momentum $\phi(3 / 2,1 / 2), \quad \phi(3 / 2,1 / 2)$,
$\phi(3 / 2,3 / 2) \quad \phi(3 / 2,3 / 2)$

Crystal-Field Splitting

States with angular momentum j are split by the lower symmetry of the crystal. Example: Cubic group O.

Allowed degeneracies in cubic symmetry: 1,2,3,4. $\begin{array}{ll} & +2 \Gamma_{8} \\ \text { All other }(>5) \text { will split. } & +2 \Gamma_{8} \\ \text { Additional splitting if symmetry lower than cubic. } & +3 \Gamma_{8}\end{array}, l$

Lowering of Symmetry

Symmetry can be lowered in various ways:

- Wyckoff position has lower symmetry than the crystal.
- Moving away from the Brillouin zone center (group of k).
- Applying an external field (strain, electric, magnetic field, etc).
- Lowering the symmetry of the crystal (Jahn-Teller effect, cubic to wurtzite, etc).

LO/TO phonons in GaP

Band Structure of Silicon and Germanium

Band Inversion: Topological Insulators

Matrix Elements: Selection Rules

Problem Statement:

- Initial state: symmetry Γ_{i}
- Final state: symmetry Γ_{f}
- Interaction Hamiltonian: symmetry Γ_{H}

Question:

Is the transition from <i| to <f| allowed?
Is the matrix element <f|H|i> zero (i.e., transition forbidden).
Answer: The transition is forbidden, unless the final state symmetry Γ_{f} is contained in the product of Γ_{i} and Γ_{H}.
This calculation uses character tables (or similar tools).
For O_{h} complexes

Example:

Optical transition from $\Gamma_{7}{ }^{+}$to $\Gamma_{7}^{-}\left(\mathrm{E}_{0}{ }^{\prime}+\Delta_{0}\right)$ forbidden in Ge .

Note: Selection rules are relaxed, if symmetry is lowered. (If we lose the inversion symmetry, parity rules go away.) $t_{2 g} \rightarrow t_{1 u}$

Summary

For a given crystal structure, we can

- Draw the Brillouin zone, find atomic coordinates.
- Label the symmetries of the electron wave functions (band structure)
- Determine crystal field splittings when reducing symmetry.
- Find the long-wavelength infrared-active and Raman-active phonon modes.
- Look up systematic extinctions in x-ray diffraction spectra.
- Calculate selection rules tor transition matrix elements.

