Optical Properties of Solids: Lecture 2

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) <u>zollner@nmsu.edu</u> or <u>zollner@fzu.cz</u>

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility – CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

NSF: DMR-1505172

NSF STAT

http://ellipsometry.nmsu.edu

Optical Properties of Solids: Lecture 2

Crystal structures Point and space groups Wyckoff positions Classification of optical vibrations

References: Crystal Structures

- Start with a good text on solid state physics:
- C. Kittel: Solid-State Physics (Wiley, 2005)
- N. Ashcroft and N. D. Mermin: Solid-State Physics (Harcourt, 1976)
- M. Dresselhaus: Solid-State Properties (Springer, 2018)
- D.W. Snoke: Solid-State Physics (Addison-Wesley, 2008)
- J.F. Nye: **Physical Properties of Crystals** (Clarendon, 1957)
- G.S. Rohrer: **Structure and Bonding** in Materials (Cambridge, 2004)
- M. Dresselhaus: **Group Theory** (Springer, 2008)
- S. J. Joshua: Symmetry Principles and Magnetic Symmetry in Solid State Physics (Adam Hilger, 1991)
- M. Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, 1964)
- T. Hahn: International Tables for Crystallography, Vol A, Space Group Symmetry (Springer, 2005)
- Bilbao Crystallographic Server, http://www.cryst.ehu.es/
- VESTA: Visualization for Electronic and Structural Analysis (program)

Symmetry and Conservation Laws (Noether)

- For every symmetry of the Hamiltonian, there is a conservation law.
- Classical physics and quantum mechanics: 10 integrals of motion
 - Time-invariance (Hamiltonian does not depend on time): Conservation of energy
 - Translational invariance (Hamiltonian does not depend on position): Conservation of momentum
 - Rotational invariance: Lie Group SO(3) (Hamiltonian does not depend on angle): Conservation of angular momentum
 - Galilei transformation: **G**=m**r**-t**p** is conserved for a free particle.
- <u>Crystalline solids:</u>
 - Energy is still conserved, if the Hamiltonian does not depend on time.
 - Translational symmetry is broken, but crystal is periodic: Conservation of crystal momentum (Bloch's theorem) Need to consider Umklapp processes (reciprocal lattice vectors)
 - Point group symmetry (rotations/reflections): subgroup of O(3) Crystal structure breaks rotational symmetry (1, 2, 3, 4, 6-fold rotations)
 Crystal-field splitting, Selection rules (allowed and forbidden transitions)

Translational Symmetry

• A Bravais lattice is a regular array of points (lattice translations)

 $\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = i\vec{a} + j\vec{b} + k\vec{c}$

where n_1 , n_2 , and n_3 (or *i*, *j*, *k*) are integers (**coordinates**) and \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are the **primitive translations**, which define the **unit cell**.

- The lattice has the following properties (Abelian cyclical group):
 - The sum and difference of translations is also a translation.
 - There is a translation with **zero** length.
 - For each translation, there is an inverse (found by inversion).
 - Translations **commute** with each other (Abelian).
 - Cyclical: Periodic boundary conditions.

Reciprocal Lattice

A Bravais lattice is a regular array of points (lattice translations)

 $\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

where n_1 , n_2 , and n_3 (or *i*, *j*, *k*) are integers (coordinates) and a_1 , a_2 , and a_3 are the **primitive translations**, which define the **unit cell**.

Representations in Quantum Mechanics

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
- The allowed energies are E₁, E₂, ...
- The eigenstate with energy E_i has degeneracy g_i . The eigenfunctions $\psi_1, \psi_2, ..., \psi_{gi}$ for this eigenstate form a vector space.
- If the Hamiltonian is invariant under a **group of symmetry operations** R, then the vector spaces of eigenfunctions for the eigenstates are also invariant under this symmetry operation.
- Noether: A **representation** is a vector space (of eigenfunctions) together with an operation which tells us how the eigenfunctions transform under the symmetry operations:

 $R\psi_j = \Sigma C_{ij}(R)\psi_i$

character:
$$\chi(R)$$
=Trace(C_{ij})

- But: This definition is too restrictive for quantum mechanics, since two wave functions describe the same state, if they only differ by a **complex factor**.
- <u>Classes of wave functions:</u>

 $[\psi] = [re^{i\phi}\psi]$

Bloch's Theorem

• The **Bravais lattice** is a regular array of points (**lattice translations**)

$$\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

- What can we say about wave functions $\psi(\mathbf{r})$ for electrons or vibrations?
- Since the translation group is Abelian+cyclical (translations commute, periodic boundary conditions), irreducible representations are 1-D.
- There are as many irreducible representations (labeled with a reciprocal space vector k) as there are lattice vectors T.
- **k** is inside the primitive cell of the reciprocal lattice (or first Brillouin zone).
- Therefore, wave functions $\psi(\mathbf{r})$ and $\psi(\mathbf{r}+\mathbf{T})$ only differ by a complex factor

 $\psi\left(\vec{r}+\vec{T}\right)=e^{i\vec{k}\cdot\vec{T}}\psi(\vec{r})$

 This implies that any wave function can written as a product of a plane wave and a periodic part:

$$\psi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{n,\vec{k}}(\vec{r})$$

k is called crystal momentum.Good quantum number (conserved).k+G is the same as k (*Umklapp process*).

Translational and Rotational Symmetry

- Not every rotational symmetry is compatible with translational invariance.
- For example, five-fold and seven-fold symmetries cannot occur in crystals.
- Only the following rotational symmetries can occur:
 - 0° or 360°
 - 60°
 - 90°
 - 120°
 - 180°

six-fold four-fold three-fold two-fold

n-fold rotation: Rotation by angle $\theta = 2\pi/n$ n=1, 2, 3, 4, 6

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
$$R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
$$R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Proof: Translational and Rotational Symmetry

For a rotation about z-axis with angle $\theta = 2\pi/n$, show that n = 1, 2, 3, 4, or 6.

 Step 1: There is a translation vector in xy-plane perpendicular to z-axis. Assume T is any translation vector. Then T'=R(θ)T is also a translation vector. The difference T-T' is a translation vector perpendicular to the z-axis.
 Step 2: Assume that R is shortest translation vector perpendicular to z.

 $\mathbf{R}'=\mathbf{R}(\theta)\mathbf{R}$ and $\mathbf{R}'-\mathbf{R}$ also translation vectors perpendicular to z-axis. See Figure. This implies that $\mathbf{R}-\mathbf{R}'$ must be longer than \mathbf{R} .

Six Crystal Families, Seven Crystal Systems

- Not every rotational symmetry is compatible with translational invariance.
- Only one-, two-, three, four-, and six-fold symmetries occur.
- Therefore, we have six crystal families (seven crystal systems).

Centered Bravais Lattices

Face-centered, body-centered, base-centered Bravais Lattices

Primitive cell has low symmetry, • but centered Bravais lattice symmetry is higher (larger **conventional cell**).

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Fourteen Bravais Lattices

Bravais	Parameters	Simple (P)	Volume	Base	Face	
lattice		1 (/	centered (I)	centered (C)	centered (F)	Ρ
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$	Ш				I F C
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$					
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$					
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$					
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$					Se be Br
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$					Ce
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^{\circ}$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$					

simple body-centered face-centered base-centered

Seven crystal systems become fourteen (14) Bravais lattices with centering.

Crystal Structures

- Crystal=Lattice+Basis
- A crystal structure is defined by
 - one of 14 Bravais lattices
 - basis vectors (coordinates of atoms within the cell): Wyckoff positions

- 230 space groups (rotations, reflections, inversion, etc, plus translations)
- 32 point groups (elements of space groups, with translations set to zero)
- Only a few elements have just one atom per Bravais lattice cell.
- BCC metals: α-Fe, V, Nb, Ta, Cr, Mo, Na, etc (8-fold coordination)
- FCC metals: Al, Cu, Au, Pb, Ni, Pt, Ag, etc (12-fold coordination)
- HCP: is not a Bravais lattice

Examples of Crystal Structures

diamond, zinc blende

 $\vec{\tau}_1 = 0; \vec{\tau}_2 = \frac{a}{2}(1,1,1)$ CsCl

$$\vec{\tau}_1 = 0; \vec{\tau}_2 = \frac{a}{2}$$
 (1,0,0); plus fcc NaCl

$$\vec{\tau}_1 = 0; \vec{\tau}_2 = \frac{a}{4}(1,1,1);$$
 plus fcc GaAs

Point origin (cation or anion) Also conventional origin (symmetric). International Tables have both origins.

See Rohrer

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

"Strukturbericht" Notation

Letter followed by number				
A: Element B: Binary compound (1:1)				
C: Binary compound (1:2)D: Complex binary				
E: Ternary or more complex Lower number, simpler structure.				

Table 4.4. The hexagonal close packed structure, Mg, A3.

Formula unit		Mg, magnesium		
Space group:		P 63/m mc (no. 194)		
Cell dimensions:	HCP	a = 3.2094 Å; $c = 5.2105$ Å		
Cell contents:		2 formula units		
Atomic positions*:		Mg in 2(c) (1/3, 2/3, 1/4); (2/3, 1/3, 3/4)	Wyckoff positions	NM
				STATE

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

See Rohrer

"Strukturbericht" Notation

Struc.	Proto.	Struc.	Proto.	Struc.	Proto.	Struc.	Proto.		Lattard	followed by pumber
A1	Cu	\mathbf{B}_{f}	ζ-CrB	DO_9	ReO ₃	D8 ₁	Fe ₃ Zn ₁₀		Letter	followed by number
A2	W	Bg	MoB	DO ₁₁	Fe ₃ C	D82	Cu ₅ Zn ₈			
A3	Mg	$\mathbf{B}_{\mathbf{h}}$	WC	DO_{18}	Na ₃ As	D83	Al ₄ Cu ₉			
A4	С	B	γ'-ΜοC	DO ₁₉	Ni ₃ Sn	$D8_4$	$Cr_{23}C_6$		A:	Element
A5	Sn	C1	CaF ₂	DO_{20}	Al ₃ Ni	D8 ₅	Fe ₇ W ₆			
A6	In	C1 _b	AgAsMg	DO ₂₁	Cu ₃ P	$D8_6$	Cu ₁₅ Si ₄		B:	Binary compound
A7	As	C2	FeS ₂	DO ₂₂	Al ₃ Ti	D8 ₈	Mn ₅ Si ₃			
A8	Se	C3	Cu ₂ O	DO ₂₃	Al ₃ Zr	D8 ₉	Co_9S_8		C:	Binary compound
A10	Hg	C4	TiO ₂	DO ₂₄	Ni ₃ Ti	D8 ₁₀	Al ₈ Cr ₅		D	
A11	Ga	C6	CdI ₂	DO _c	SiU ₃	D8 ₁₁	Al ₅ Co ₂		D:	Complex binary
A12	α-Mn	C7	MoS ₂	DO_e	Ni ₃ P	D8 _a	Mn ₂₃ Th ₆		T .	
A13	β-Mn	C11 _a	CaC ₂	$D1_3$	Al ₄ Ba	D8 _b	σ phase		E:	Ternary or more co
A15	W ₃ O	C11 _b	MoSi ₂	D1 _a	MoNi ₄	D8 _f	Ge ₇ Ir ₃			
A20	α-U	C12	CaSi ₂	D1 _b	Al_4U	D8 ₁	Mo_2B_5			
B1	NaCl	C14	MgZn ₂	D1 _e	PtSn ₄	D8 _h	W_2B_5		Lowor	number eimpler etr
B2	CsCl	C15	MgCu ₂	D1 _e	ThB ₄	D8 ₁	Cr ₅ B ₃		LOwer	number, simpler str
B3	ZnS cub	C15 _b	AuBe ₅	D1 _f	Mn ₄ B	D8 _m	Si ₃ W ₅			
B4	ZnS hex	C16	Al ₂ Cu	$D2_1$	CaB ₆	D10 ₁	Cr ₇ C ₃			
B 8 ₁	NiAs	C18	FeS ₂	$D2_3$	NaZn ₁₃	D10 ₂	Fe ₃ Th ₇			
B82	InNi ₂	C19	CdCl ₂	D2 _b	Mn ₁₂ Th	$E0_1$	PbFCl	<u> </u>		, alliaidea (TiC
B9	HgS	C22	Fe ₂ P	D2 _e	MnU_6	E1 ₁	CuFeS ₂		49, C54	: silicides (TiS
B10	PbO	C23	PbCl ₂	D2 _d	CaCa ₅	$E2_1$	CaTiO ₃		۸.	$r_{\rm intil}$ (TiO)
B11	γ-CuTi	C32	AlB ₂	D2 _f	UB ₁₂	E3	Al ₂ CdS ₄	C ⁴	4.	rutile (TiO ₂)
B13	NiS	C33	Bi ₂ STe ₂	D2 _h	Al ₆ Mn	E9 ₃	CFe ₃ W ₃		5 .	connhiro (Al
B16	GeS	C34	AuTe ₂	D5 ₁	α -Al ₂ O ₃	E9 _a	Al ₇ Cu ₂ Fe		5 ₁ :	sapphire (Al ₂
B17	PtS	C36	MgNi ₂	D5 ₂	La ₂ O ₃	E9 _b	AlLi ₃ N ₂		2₁:	perovskite (C
B18	CuS	C38	Cu ₂ Sb	$D5_3$	Mn ₂ O ₃	F0 ₁	NiSbS		- 1·	
B19	AuCd	C40	CrSi ₂	$D5_8$	Sb_2S_3	F5 ₁	NaCrS ₂	H	1 ₁ :	spinel (MgAl
B20	FeSi	C44	GeS ₂	$D5_9$	P_2Zn_3	H1 ₁	Al2MgO4		' 1•	
B27	FeB	C46	AuTe ₂	D5 ₁₀	C ₂ Cr ₃	$H2_4$	Cu_3VS_4			
B31	MnP	C49	ZrSi ₂	D5 ₁₃	Al ₃ Ni ₂	$L1_0$	AuCu			
B32	NaTl	C54	TiSi ₂	D5 _a	Si_2U_3	L1-	AuCu.			
B34	PdS	C_{e}	ThSi ₂	D5 _e	Pu_2C_3	http	s://com	mons.	<i>v</i> ikimedia.	.org/wiki/Strukturbericht
B35	CoSn	C_e	CoGe ₂	D7 ₁	Al_4C_3		2			
B37	TISe	DO ₂	CoAs ₃	D7 ₃	Th ₃ P ₄	L′3	Fe ₂ N			See Debrer
Be	CdSb	DO ₃	BiF ₃	D7 _b	Ta ₃ B ₄	L6 ₀	CuTi,	cture 2	18	See Rohrer

Element Binary compound (1:1) Binary compound (1:2) Complex binary Ternary or more complex
ver number, simpler structure.

C49, C54:	silicides (TiSi ₂)
C4:	rutile (TiO ₂)
D5 ₁ :	sapphire (Al ₂ O ₃)
E2 ₁ :	perovskite (CaTiO ₃)
H1 ₁ :	spinel (MgAl ₂ O ₄)

Formula unit	NaCl, sodium chloride					
Space group:	Fm3m (no.					
Cell dimensions:	a=5.6402 Å					
Cell contents:	4 formula units					
Atomic positions:	Na in (4b)	m3m	(0, 0, 0) + F			
	Cl in (4a)	m3m	(1/2, 1/2, 1/2)+F			
Examples:						

Many materials have the same crystal structure.

compound	a (Å)						
MgO	4.213	MgS	5.200	LiF	4.0270	KF	5.347
CaO	4.8105	CaS	5.6948	LiCl	5.1396	KCl	6.2931
SrO	5.160	SrS	6.020	LiBr	5.5013	KBr	6.5966
BaO	5.539	BaS	6.386	LiI	6.00	KI	7.0655
TiO	4.177	αMnS	5.224	LiH	4.083	RbF	5.6516
MnO	4.445	MgSe	5.462	NaF	4.64	RbCl	6.5810
FeO	4.307	CaSe	5.924	NaCl	5.6402	RbBr	6.889
CoO	4.260	SrSe	6.246	NaBr	5.9772	RbI	7.342
NiO	4.1769	BaSe	6.600	NaI	6.473	AgF	4.92
CdO	4.6953	CaTe	6.356	NaH	4.890	AgCl	5.549
SnAs	5.7248	SrTe	6.660	ScN	4.44	AgBr	5.7745
TiC	4.3285	BaTe	7.00	TiN	4.240	CsF	6.014
UC	4.955	LaN	5.30	UN	4.890	LuSb	6.0555

See Rohrer

Schoenflies notation for 32 point groups

Hermann- Mauguin	Schoenflies	Hermann- Mauguin	Schoenflies	C _n	n-fold rotation
1	C1	422	D ₄	i	inversion
- 1	C _i , S ₂	4mm	C _{4v}	V	vertical mirror plane
2	C_2	$\overline{3} 2m$	D _{2d}	d	diagonal mirror plane
m	Cs, S_1	$\frac{4}{m}mm$	D_{4h}	h D _n	horizontal mirror plane dihedral group (<i>Drehgruppe</i>)
2/m	C_{2h}	6	C_6		n C ₂ axes perpendicular to C _n
222	D_2	Ē	C_{3h}	S _n	improper rotation
<i>mm</i> 2	C_{2v}	$\frac{6}{m}$	C _{6h}	т	(Spiegelreflexion) tetrahedral symmetry
mmm	D_{2h}	622	D ₆	0	cubic symmetry
3	C ₃	6 <i>mm</i>	C _{6v}	Ŭ	
3	S_6	$\overline{6} m2$	D_{3h}	Also inter	mational (Hermann-Mauguin) notation.
32	D ₃	$\frac{6}{m}mm$	D _{6h}	n	n-fold rotation
3 <i>m</i>	C_{3v}	23	Т	m	mirror plane
$\overline{3}m$	D_{3d}	<i>m</i> 3	T_h	n-bar	C _n rotation followed by inversion
4	C_4	432	0	n/m	mirror plane perpendicular to C _n
4	\mathbf{S}_4	ā 3 <i>m</i>	T _d		
4	C_{4h}		O_h		
m		<i>m</i> 3 <i>m</i>		of Solids Lectu	ire 2 20

Stereographic projections of 32 point groups

Graphic representation of point group symmetries

Line Open circle Edge symbol

21

mirror plane inversion Central symbol vertical n-fold axis horizonal n-fold axis

 C_n n-fold rotation inversion vertical mirror plane diagonal mirror plane horizontal mirror plane D_n dihedral group (*Drehgruppe*) n C₂ axes perpendicular to C_n tetrahedral symmetry cubic symmetry

Non-Symmorphic Space Groups

- 32 point groups (all crystal symmetries with translation set to zero)
- 230 space groups
- <u>73 Symmorphic space groups:</u> Point group is a subgroup of the space group
- <u>157 Non-symmorphic space groups:</u> Some point group elements have non-primitive translations. Screw axes and glide planes.

Glide plane: reflection followed by translation

Diamond structure has two equivalent sublattices. Inversion must be followed by glide along (111). Non-primitive translation by a/4(1,1,1). This is called the d (diagonal, diamond) glide. International Tables list non-primitive translations.

Non-Symmorphic Space Groups: Screw axis

- 32 point groups (all crystal symmetries with translation set to zero)
- 230 space groups
- <u>73 Symmorphic space groups:</u> Point group is a subgroup of the space group
- <u>157 Non-symmorphic space groups:</u> Some point group elements have non-primitive translations.

International Tables of Crystallography

		-	<u> </u>		9.4	··· · · · · · · · · · · · · · · · · ·		General:	
 Notations for 230 Space Groups Space number from 1 to 23 International Notation Schoenflies symbol with support 		$\begin{aligned} hkil &: -h + k\\ hki0 &: -h + k\\ hh2hl: l &= 3n\\ h\bar{h}0l &: h + l &= \\ 000l &: l &= 6n\\ h\bar{h}00 &: h &= 3n\\ \end{aligned}$	= 3n 3n, l = 2n						
International Tables for Crystallography (2006). Vol. A, Space g	group 1	67, p	p. 548–5	551.				no extra condit	ions
$R\bar{3}c$ D_{3d}^{6}		3	т		Trigonal			hkil : l = 2n $hkil : l = 2n$	
No. 167 $D\bar{2}Q/q$					e			hkil : $l = 2n$	
No. 167 $R\bar{3}2/c$				_ <mark>Wyc</mark> ł	coff po	ositior	าร	hkil : $l = 2n$	
Symmetry operations $\frac{5}{12}$ $\frac{1}{12}$	Positions Multiplicity, Wyckoff lette Site symmetry 36 f 1			(0 (1) x, y, z (4) $y, x, \bar{z} +$ (7) $\bar{x}, \bar{y}, \bar{z}$ (10) $\bar{y}, \bar{x}, z +$	(8)		3) $\bar{x} + y, \bar{x}, z$ 5) $\bar{x}, \bar{x} + y, \bar{z} + y, \bar{z} + y, \bar{z} + y, z$ 2) $x - y, x, \bar{z}$ 2) $x, x - y, z + y, $		
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	18 18 12 6	e d c b	. 2 I 3. 3.	$x, 0, \frac{1}{4}$ $\frac{1}{2}, 0, 0$ $0, 0, z$ $0, 0, 0$	-	$\bar{x}, \bar{x}, \frac{1}{4}$ $\frac{1}{2}, \frac{1}{2}, 0$ $0, 0, \bar{z}$	$\bar{x}, 0, \frac{3}{4}$ $0, \frac{1}{2}, \frac{1}{2}$	$0, \bar{x}, \frac{3}{4}$ $\frac{1}{2}, 0, \frac{1}{2}$	2 $x, x, \frac{3}{4}$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
Stefan Zollner, February 2019, Optical Properties	6	а	32	$0, 0, \frac{1}{4}$	$0, 0, \frac{3}{4}$				

Reflection conditions

Bilbao Crystallographic Server

http://www.cryst.ehu.es

Wyckoff Positions of Group 167 (R-3c) [hexagonal axes]

Multiplicity	Wyckoff	Site	te Coordinates							
muniplicity	letter	symmetry	(0,0,0) + (2/3,1/3,1/3) + (1/3,2/3,2/3) +							
36	f	1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
18	е	.2	(x,0,1/4) (0,x,1/4) (-x,-x,1/4) (-x,0,3/4) (0,-x,3/4) (x,x,3/4)							
18	d	-1	(1/2,0,0) (0,1/2,0) (1/2,1/2,0) (0,1/2,1/2) (1/2,0,1/2) (1/2,1/2,1/2)							
12	С	3.	(0,0,z) (0,0,-z+1/2) (0,0,-z) (0,0,z+1/2)							
6	b	-3.	(0,0,0) (0,0,1/2)							
6	а	32	(0,0,1/4) (0,0,3/4)							

Character Table of the group $D_{3d}(-3m)^*$

D _{3d} (-3m)	#	1	3	2 ₁₋₁₀	-1	-3	m ₁₋₁₀	functions
Mult.	-	1	2	3	1	2	3	-
A _{1g}	۲ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ² Raman
A _{2g}	Γ ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	(x ² -y ² ,xy),(xz,yz),(J _x ,J _y) <mark>Raman</mark>
A _{1u}	Г1 ⁻	1	1	1	-1	-1	-1	
A _{2u}	Г2 ⁻	1	1	-1	-1	-1	1	
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Brillouin zone, table of k-points

Also:

Character Table for Double Groups Symmetries of Physical Tensors Raman Tensors

> W. Setyawan and S. Curtarolo, Comp. Mat. Sci. 49, 299 (2010).

Nye: Physical Properties of Crystals

 $\vec{D} = \varepsilon \vec{E}$

- D Dielectric displacementE electric field
- ε dielectric tensor
- For crystal class -3m, the dielectric tensor
- has two independent diagonal components.
- off-diagonal components are zero.

Also: Stress/strain, magnetic, piezo, ... Many different tensor properties.

Stefan Zollner, February 2019, Optical Properties of Solids Lectur

11

D

More Examples of Crystal Structures: Rutile TiO₂

Table 4.19. The rutile structure, titanium dioxide, C4.

Formula un		2	nium dioxide					_	
Space group: Cell dimensions:		$P4_2/mnm$ ((no. 136) A, $c = 2.958$ Å	Inte	rnal	para	meter	X	
Cell conten								_	(HATELIAN)
		2 formula units Ti in (2π)							
Atomic pos	itions:	Ti in (2a) mmm (0, 0, 0); (1/2, 1/2, 1/2)							
		O in (4f)		$(x, 0); (\bar{x}, \bar{x}, 0)$	-				
			(1/2)	+x, 1/2 - x,	112), (112	x - x, 1/2 +	x, 1/2)		
Examples			<i>x</i> -	0.5					Sales and Manager
Examples									
compound	a(Å)	c(Å)	x	compound	a(Å)	<i>c</i> (Å)	X		
TiO ₂	4.5937	2.9581	0.305	CrSbO4	4.57	3.042			
CrO ₂	4.41	2.91		CrTaO ₄	4.626	3.009			
GeO ₂	4.395	2.859	0.307	FeNbO ₄	4.68	3.05			
IrO ₂	4.49	3.14		FeSbO ₄	6.623	3.011		Sn/Ln	
β -MnO ₂	4.396	2.871	0.302	FeTaO ₄	4.672	3.042		-	
MoO ₂	4.86	2.79		GaSbO ₄	4.59	3.03			
NbO ₂	4.77	2.96		RhSbO ₄	4.601	3.100		0	
OsO ₂	4.51	3.19		RhVO ₄	6.607	2.923			
PbO ₂	4.946	3.379		CoF ₂	4.6951	3.1796	0.306	c	
RuO ₂	4.51	3.11		FeF ₂	4.6966	3.3091	0.300	4	
SnO ₂	4.7373	3.1864	0.307	MgF ₂	4.623	3.052	0.303		
TaO ₂	4.709	3.065		MnF ₂	4.8734	3.3099	0.305		
WO ₂	4.86	2.77		NiF ₂	4.6506	3.0836	0.302		
AlSbO ₄	4.510	2.961	0.305	PdF ₂	4.931	3.367			
CrNbO ₄	4.635	3.005		ZnF ₂	4.7034	3.1335	0.303		

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

See Rohrer

Table 4.22. The spinel structure, magnesium aluminate, H1, [13].

Formula unit	MgAl ₂ O ₄ , magnesium aluminate						
Space group:	Fd3m (no. 227)						
Cell dimensions:	a=8.086						
Cell contents:	8 formula units						
Atomic positions:	Mg in (8a)	4 3m	(0, 0, 0); (1/4, 1/4, 1/4) + F				
	Al in (16c)	3m	(5/8, 5/8, 5/8); (5/8, 7/8, 7/8);				
			(7/8, 5/8, 7/8); (7/8, 7/8, 5/8) + F				
	O in (32e)	3m	$(x, x, x); (x, \overline{x}, \overline{x}); (1/4 - x, 1/4 - x, 1/4 - x);$				
			$(1/4 - x, x+1/4, x+1/4); (\bar{x}, \bar{x}, x); (\bar{x}, x, \bar{x});$				
			(x+1/4, 1/4-x, x+1/4); (x+1/4, x+1/4,				

1/4 - x) + F; x = 3/8

Examples

a (Å) a (Å) compound х compound х MgAl₂O₄ 0.387 CdMn₂O₄ 8.22 8.086 MgTi₂O₄ 8.474 CdFe₂O₄ 8.69 CdGe₂O₄ 8.39 MgV,O, 8.413 0.385 MgCr₂O₄ 8.333 0.835 CdRh₂O₄ 8.781 MgMn₂O₄ 10.957 8.07 0.385 MgYb₂S₄ Mn MgRh₂O₄ 8.530 CaIn₂S₄ 10.774 < 0.393 MnTi₂O₄ 8.600 MnCr₂S₄ 10.129 Co 9.998 MnV₂O₄ 8.522 0.388 FeCr₂S₄ 8.437 9.934 CoCr₂S₄ MnCr₂O₄ 0 8.13 Mn₃O₄ CoRh₃S₄ 9.71 MnRh₂O₄ CuTi₂S₄ 9.880 8.613 0.3829.824 FeCr₂O₄ 8.377 CuV_2S_4 0.384 CuCr₂S₄ 9.629 0.381 CoAl₂O₄ 8.105 0.390 CoV₂O₄ 8.407 CuRh₂S₄ 9.72 8.332 CoCr₂O₄ ZnAl₂S₄ 9.988 0.384 CoMn₂O₄ 8.1 ZnCr₂S₄ 9.983 8.083 Co₃O₄ CdCr₂S₄ 10.207 0.375 8.495 CoRh₂O₄ CdIn₂S₄ 10.797 0.386 NiCr₂O₄ 8.248 HgCr₂S₄ 10.206 0.392 8.36 10.812 < 0.403NiRh2O4 HgIn₂S₄ 0.380 CuCr₂Se₄ CuCr₂O₄ 8.532 10.365 CuMn₂O₄ ZnCr₂Se₄ 8.33 0.390 10.443 0.378 CuRh₂O₄ 8.702 CdCr₂Se₄ 10.721 0.383 0.379 :ture 2 28 ZnAl₂O₄ 8.086 CuCr,Te, 11.049

Examples of Crystal Structures: Spinel

Spinel AB₂O₄ A and B can be the same (Co) Normal: B¹+B² octahedral, A tetrahedral Inverse: A+B¹ octahedral, B² tetrahedral

Table 4.28. The perovskite structure, calcium titanate, E21.

Formula un	it	CaTiO ₃ , calcium titanate								
Space group		Pm3m (no. 22			SrTiO ₃					
Cell dimensions:		$a=3.84\text{\AA}$								
Cell contents:		1 formula unit per cell								
Atomic positions:		Ti in (1a) $m\bar{3}m$ (0, 0, 0)								
		Ca in (1b) $m\bar{3}m$ (1/2, 1/2, 1/2)								
		O in (3d) 4/mmm (0, 0, 1/2); (0, 1/2, 0); (1/2, 0, 0)								
Examples										
compound	a (Å)	compound	a (Å)	compound	a (Å)	compound	a (Å)			
BaCeO ₃	4.397	KNbO3	4.007	PrAlO ₃	3.757	AgZnF ₃	3.98			
BaTiO ₃	4.012	KTaO ₃	3.9858	PrCrO ₃	3.852	CsCaF ₃	4.552			
BaMoO ₃	4.0404	LaAlO ₃	3.778	PrFeO ₃	3.887	CsCdBr ₃	5.33			
BaPbO ₃	4.273	LaCrO ₃	3.874	PrGaO ₃	3.863	CsCdCl ₃	5.20			
BaPrO ₃	4.354	LaFeO3	3.920	PrMnO ₃	3.82	CsHgBr ₃	5.77			
BaTiO ₃	4.0118	LaGaO ₃	3.874	PrVO ₃	3.89	CsPbCl ₃	5.605			
BaZrO ₃	4.1929	LaRhO ₃	3.94	SmAlO ₃	3.734	CsPbBr ₃	5.874			
CaTiO ₃	3.84	LaTiO ₃	3.92	SmCoO ₃	3.75	KCdF ₃	4.293			
CaVO ₃	3.76	LaVO ₃	3.99	SmCrO ₃	3.812	KCoF3	4.069			
CeAlO ₃	3.772	Li _x WO ₃	3.72	SmFeO ₃	3.845	KFeF ₃	4.122			
DyMnO ₃	3.70	NaAlO ₃	3.73	SmVO ₃	3.89	KMgF ₃	3.973			
EuAlO ₃	3.725	NaTaO ₃	3.881	SrFeO ₃	3.869	KMnF ₃	4.190			
EuCrO ₃	3.803	NaWO ₃	3.8622	SrMoO ₃	3.9751	KNiF ₃	4.012			
EuFeO ₃	3.836	NdAlO ₃	3.752	SrTiO ₃	3.9051	KZnF ₃	4.055			
EuTiO ₃	3.897	NdCoO ₃	3.777	SrZrO ₃	4.101	RbCoF ₃	4.062			
GdAlO ₃	3.71	NdCrO ₃	3.835	YAIO ₃	3.68	RbCaF3	4.452			
GdCrO ₃	3.795	NdFeO ₃	3.870	YCrO ₃	3.768	RbMnF ₃	4.250			
GdFeO ₃	3.820	NdMnO ₃	3.80	YFeO ₃	3.785	TICoF ₃	4.138			

Examples of Crystal Structures: Perovskite

A can be organic molecule. Perovskite solar cells.

See Rohrer

Drawing Crystal Structures with VESTA

Download: <u>http://jp-minerals.org/vesta</u> Copy to "Program Files" directory. Download tutorial and example files.

Search for the crystal you want (say SrRuO₃) Download+open crystal metadata (*.CIF etc) Calculate x-ray diffraction pattern.

SrRuO₃ a=5.58 Å, b=7.84 Å, c=5.54 Å $\alpha = \beta = \gamma = 90^{\circ}$ orthorhombic P Space Group 62 Pnma or D_{2h}¹⁶ Four formula units per cell <u>Wyckoff positions</u>

Sr (4c) 0.4375 0.25 0.0154 Ru (4a) 0 0 0 O1 (8d) 0.1988 0.0528 0.3044 O2 (4c) 0.5323 0.25 0.5996

Classification of Lattice Vibrations (k=0)

Long-wavelength (zone-center) lattice vibrations can be

- Infrared-active (transform like x, y, z)
- Raman-active (transform like xy, yz, zx or x², y², z²)
- Silent
- Transformation property can be found from point group character table.

If there are N atoms per primitive cell, there are 3N degrees of freedom.

- 3 acoustic phonons (translation of crystal), zero energy
- 3(N-1) optical phonons

Find representations for optical phonons?

Need to know:

- Bravais lattice+basis, point group, space group
- Wyckoff positions (where are the atoms?)
- How do the symmetry operations act on the atoms? Check International Tables.
- Call N_R the number of invariant atoms for symmetry operator R
- Calculate character

$$\chi(R) = N_R (\det R + 2\cos\phi)$$

• Decompose $\chi(R)$ into irreducible representations (using characters).

See Dresselhaus, Dresselhaus, and Jorio, Group Theory (Springer, 2008)

Classification of Phonons in Metal Oxides

Origin of the Spin in Quantum Mechanics

- "The spin is a purely relativistic effect because it is derived from the Dirac equation" (not true!).
- In my opinion, the spin is derived from the unknown phase of the wave function in non-relativistic quantum mechanics.
- Mathematical theorem: "The finite-dimensional projective representations" of a compact Lie Group are identical to the representations of its universal covering group."
- We need to take a few minutes to understand what this means.

Wikipedia: Look up "Projective Representation"

 Wahrheit und Klarheit sind komplementär. (Attributed to Niels Bohr) Truth and clarity are mutually exclusive.

Representations in Quantum Mechanics

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
- The allowed energies are E₁, E₂, ...
- The eigenstate with energy E_i has degeneracy g_i . The eigenfunctions $\psi_1, \psi_2, ..., \psi_{gi}$ for this eigenstate form a vector space.
- If the Hamiltonian is invariant under a **group of symmetry operations** R, then the vector spaces of eigenfunctions for the eigenstates are also invariant under this symmetry operation.
- Noether: A **representation** is a vector space (of eigenfunctions) together with an operation which tells us how the eigenfunctions transform under the symmetry operations:

 $R\psi_j = \Sigma C_{ij}(R)\psi_i$

character:
$$\chi(R)$$
=Trace(C_{ij})

- But: This definition is too restrictive for quantum mechanics, since two wave functions describe the same state, if they only differ by a **complex factor**.
- <u>Classes of wave functions:</u>

 $[\psi] = [re^{i\phi}\psi]$

Projective Representations

- Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
- The allowed energies are $E_1, E_2, ...$
- The eigenstate with energy E_i has degeneracy g_i . The classes of eigenfunctions $[\psi_1]$, $[\psi_2]$, ..., $[\psi_{gi}]$ form a vector space.
- If the Hamiltonian is invariant under a group of symmetry operations R, then the vector spaces of **classes of eigenfunctions** for the eigenstates are also invariant under this symmetry operation.
- A **projective** representation is a vector space (of **classes of eigenfunctions**) together with an operation which tells us how the classes of eigenfunctions transform under the symmetry operations:

 $R[\psi_i] = \Sigma C_{ii}[\psi_i]$

The coefficients C_{ii} are only defined up to a complex factor.

Introduction to Algebraic Topology

The finite-dimensional projective representations of a **compact** Lie Group are identical to the representations of its **universal** covering group.

<u>Compact</u>: Each open cover has a finite subcover. (=>closed and bounded)

Connected Spaces

A topological space is called **connected**, if it cannot be represented as a union of two or more disjoint nonempty open subsets.

For any two points, I can find a path connecting the two points.

Simply Connected Spaces

A topological space is called **simply connected**, if every closed loop can be contracted into a point.

The sphere is simply connected, but the torus is not.

The colored paths in the torus cannot be deformed into a point.

Fundamental group **Z**x**Z** (winding number)

Simply Connected Spaces

A topological space is called **simply connected**, if every closed loop can be contracted into a point.

Karlovy Vary cup

Projective Representations of SO(3)

Rotational SO(3) invariance of a Hamiltonian implies that angular momentum is conserved. **Every angular momentum state belongs to a projective representation of SO(3)**, i.e., a representation of SU(2).

SO(3)	E	$R(\phi)$	Double-group			
$\Gamma^l: Y_{lm}(\theta, \varphi)$	2 +1	$\sin[(2l+1)\varphi/2]/\sin(\phi/2)$				
l=0 (s)	1	1				
l=1 (p)	3	$\sin[3\varphi/2]/\sin(\phi/2)$	Integral angular momentum			
l=2 (d)	5	$\sin[5\varphi/2]/\sin(\phi/2)$				
l=3 (f)	7	$\sin[7\varphi/2]/\sin(\phi/2)$				
etc.						
I=1/2	2	$\sin[\varphi]/\sin(\phi/2)$				
I=3/2	4	$\sin[2\varphi]/\sin(\phi/2)$	Half-integral angular momentum			
I=5/2	6	$\sin[3\varphi]/\sin(\phi/2)$	Extra representations			
etc.						

Double Groups and Extra Reps for Point Groups

We also need integral and half-integral representations for **point groups** and **space groups**. The X-point in the diamond structure is special, where all levels are doubly-degenerate (topological protection).

					$\frac{3C_2}{3\overline{C}_2}$						Double-group	
T_d	E	\overline{E}	$8C_3$	$8\overline{C}_3$	$\frac{3C_2}{3\overline{C}_2}$	$6S_4$	$6\overline{S}_4$	$6\sigma_d$ $6\overline{\sigma}_d$	time inversion	bases for <i>O</i>	bases for T_d	
Γ_1				1			1			R	R or xyz	
Γ_2	1	1	1	1	1	-1	-1	-1	a	xyz	$S_x S_y S_z$	
$\Gamma_3(\Gamma_{12})$	2	2	-1	-1	2	0	0	0	a		u^2) $(2z^2 - x^2 - u^2)$	
										Integral	angular momentum	
$\Gamma_4(\Gamma_{15})$	3	3	0	0	-1	1	1	-1	a	S_x, S_y, S_z	S_x, S_y, S_z	
$\Gamma_5(\Gamma_{25})$	3	3	0	0	-1	-1	-1	1	a	yz, xz, xy	x,y,z	
Γ_6	2 -	-2	1	-1	0	$\sqrt{2}$	$-\sqrt{2}$	0	c		$(2), \phi(1/2, -1/2),$	
										$\phi(1/2, 1/2)$) $\phi(1/2, 1/2)$	
Γ_7	2 -	-2	1	-1	0	$-\sqrt{2}$	$\sqrt{2}$	0	c	$\Gamma_6 \otimes \Gamma_2$	xtra representations	
Γ_8					0						$(a) = \frac{1}{2}(a + b) = \frac{1}{2}(a)$	
										Half-inte	egral angular momer	nt
ll tables	s a	t <u>h</u>	ttp:/	//ww	/w.cry	/st.eh	nu.es			$\phi(3/2, 1/2)$), $\phi(3/2, 1/2)$,	
lso R.J	. E	llio	t, P	hys.	Rev.	96, 2	280 (1954	4).		$\phi(3/2,3/2)$	Ī
												S

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Crystal-Field Splitting

States with angular momentum j are split by the lower symmetry of the crystal. Example: Cubic group O.

Lowering of Symmetry

Symmetry can be lowered in various ways:

- Wyckoff position has lower symmetry than the crystal.
- Moving away from the Brillouin zone center (group of k).
- Applying an external field (strain, electric, magnetic field, etc).
- Lowering the symmetry of the crystal (Jahn-Teller effect, cubic to wurtzite, etc).

Band Structure of Silicon and Germanium

Band Inversion: Topological Insulators

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

Matrix Elements: Selection Rules

Problem Statement:

- Initial state: symmetry Γ_i
- Final state: symmetry $\Gamma_{\rm f}$
- Interaction Hamiltonian: symmetry $\Gamma_{\rm H}$

Question:

Is the transition from <i| to <f| allowed?

Is the matrix element <f|H|i> zero (i.e., transition forbidden).

<u>Answer</u>: The transition is forbidden, unless the final state symmetry Γ_{f} is contained in the product of Γ_{i} and Γ_{H} .

This calculation uses character tables (or similar tools).

Example:

Optical transition from Γ_7^+ to Γ_7^- (E₀'+ Δ_0) forbidden in Ge.

 $d \rightarrow d$ $t_0'+\Delta_0)$ forbidden in Ge. $t_{2g} \rightarrow d$

 $d \rightarrow d$ $t_{2g} \rightarrow e_g$ Forbidden

For O_h complexes

<u>Note:</u> Selection rules are relaxed, if symmetry is lowered. $d \rightarrow p$ (If we lose the inversion symmetry, parity rules go away.) $t_{2g} \rightarrow t_{1u}$ Allowed

$$p \rightarrow p$$

 $t_{1u} \rightarrow t_{1u}$ Forbidden

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2

47

Summary

For a given crystal structure, we can

- Draw the Brillouin zone, find atomic coordinates.
- Label the symmetries of the electron wave functions (band structure)
- Determine crystal field splittings when reducing symmetry.
- Find the long-wavelength infrared-active and Raman-active phonon modes.
- Look up systematic extinctions in x-ray diffraction spectra.
- Calculate selection rules tor transition matrix elements.

