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References: Crystal Structures
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• Start with a good text on solid state physics:
• C. Kittel: Solid-State Physics (Wiley, 2005)
• N. Ashcroft and N. D. Mermin: Solid-State Physics (Harcourt, 1976)
• M. Dresselhaus: Solid-State Properties (Springer, 2018)
• D.W. Snoke: Solid-State Physics (Addison-Wesley, 2008)

• J.F. Nye: Physical Properties of Crystals (Clarendon, 1957)

• G.S. Rohrer: Structure and Bonding in Materials (Cambridge, 2004)

• M. Dresselhaus: Group Theory (Springer, 2008)
• S. J. Joshua: Symmetry Principles and Magnetic Symmetry in Solid State 

Physics (Adam Hilger, 1991)
• M. Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, 1964)

• T. Hahn: International Tables for Crystallography, Vol A, Space Group 
Symmetry (Springer, 2005)

• Bilbao Crystallographic Server, http://www.cryst.ehu.es/
• VESTA: Visualization for Electronic and Structural Analysis (program)

http://www.cryst.ehu.es/


Symmetry and Conservation Laws (Noether)
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• For every symmetry of the Hamiltonian, there is a conservation law.

• Classical physics and quantum mechanics: 10 integrals of motion
• Time-invariance (Hamiltonian does not depend on time):

Conservation of energy
• Translational invariance (Hamiltonian does not depend on position):

Conservation of momentum
• Rotational invariance: Lie Group SO(3) (Hamiltonian does not depend on angle):

Conservation of angular momentum
• Galilei transformation: G=mr−tp is conserved for a free particle.

• Crystalline solids:
• Energy is still conserved, if the Hamiltonian does not depend on time.
• Translational symmetry is broken, but crystal is periodic:

Conservation of crystal momentum (Bloch’s theorem)
Need to consider Umklapp processes (reciprocal lattice vectors)

• Point group symmetry (rotations/reflections): subgroup of O(3)
Crystal structure breaks rotational symmetry (1, 2, 3, 4, 6-fold rotations)
Crystal-field splitting, Selection rules (allowed and forbidden transitions)



Translational Symmetry
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• A Bravais lattice is a regular array of points (lattice translations)

where n1, n2, and n3 (or i, j, k) are integers (coordinates) and 
a1, a2, and a3 are the primitive translations, which define the unit cell.

• The lattice has the following properties (Abelian cyclical group):
• The sum and difference of translations is also a translation.
• There is a translation with zero length.
• For each translation, there is an inverse (found by inversion).
• Translations commute with each other (Abelian).
• Cyclical: Periodic boundary conditions.

𝑇𝑇 = 𝑛𝑛1�⃗�𝑎1 + 𝑛𝑛2�⃗�𝑎2+ 𝑛𝑛3�⃗�𝑎3 = 𝑖𝑖�⃗�𝑎 + 𝑗𝑗𝑏𝑏+ 𝑘𝑘𝑐𝑐

Unit cell:
Usually a≤b≤c
Angle α across a



Reciprocal Lattice
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• A Bravais lattice is a regular array of points (lattice translations)

where n1, n2, and n3 (or i, j, k) are integers (coordinates) and 
a1, a2, and a3 are the primitive translations, which define the unit cell.

• Reciprocal Lattice:

𝑇𝑇 = 𝑛𝑛1�⃗�𝑎1 + 𝑛𝑛2�⃗�𝑎2+ 𝑛𝑛3�⃗�𝑎3

𝑏𝑏1 =
2𝜋𝜋
𝑉𝑉
�⃗�𝑎2 × �⃗�𝑎3

𝑏𝑏2 =
2𝜋𝜋
𝑉𝑉
�⃗�𝑎3 × �⃗�𝑎1

𝑏𝑏3 =
2𝜋𝜋
𝑉𝑉
�⃗�𝑎1 × �⃗�𝑎2

𝑉𝑉 = �⃗�𝑎1 � �⃗�𝑎2 × �⃗�𝑎3

�⃗�𝐺 = 𝑚𝑚1𝑏𝑏1 + 𝑚𝑚2𝑏𝑏2+ 𝑚𝑚3𝑏𝑏3

exp 𝑖𝑖�⃗�𝐺 � 𝑇𝑇 = 1

𝑟𝑟 = 𝑥𝑥1�⃗�𝑎1 + 𝑥𝑥2�⃗�𝑎2+ 𝑥𝑥3�⃗�𝑎3
Vectors in the primitive cell

Vectors in the reciprocal cell
𝑘𝑘 = 𝑦𝑦1𝑏𝑏1 + 𝑦𝑦2𝑏𝑏2+ 𝑦𝑦3𝑏𝑏3
0 ≤ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ≤ 1

Or in Wigner/Seitz cell or BZ

The reciprocal lattice describes all plane waves in the lattice.



Representations in Quantum Mechanics
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• Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
• The allowed energies are E1, E2, …
• The eigenstate with energy Ei has degeneracy gi. 

The eigenfunctions ψ1, ψ2, …, ψgi for this eigenstate form a vector space.

• If the Hamiltonian is invariant under a group of symmetry operations R, then the 
vector spaces of eigenfunctions for the eigenstates are also invariant under this 
symmetry operation.

• Noether: A representation is a vector space (of eigenfunctions) together with an 
operation which tells us how the eigenfunctions transform under the symmetry 
operations:

Rψj=ΣCij(R)ψi character: χ(R)=Trace(Cij)
• But: This definition is too restrictive for quantum mechanics, since two wave 

functions describe the same state, if they only differ by a complex factor.
• Classes of wave functions: 

[ψ]=[reiφψ]



Bloch’s Theorem
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• The Bravais lattice is a regular array of points (lattice translations)

• What can we say about wave functions ψ(r) for electrons or vibrations?

• Since the translation group is Abelian+cyclical (translations commute, 
periodic boundary conditions), irreducible representations are 1-D. 

• There are as many irreducible representations (labeled with a reciprocal 
space vector k) as there are lattice vectors T. 

• k is inside the primitive cell of the reciprocal lattice (or first Brillouin zone).
• Therefore, wave functions ψ(r) and ψ(r+T) only differ by a complex factor

• This implies that any wave function can written as a product of a plane wave 
and a periodic part:  

𝑇𝑇 = 𝑛𝑛1�⃗�𝑎1 + 𝑛𝑛2�⃗�𝑎2+ 𝑛𝑛3�⃗�𝑎3

𝜓𝜓 𝑟𝑟 + 𝑇𝑇 = 𝑒𝑒𝑖𝑖𝑘𝑘�𝑇𝑇𝜓𝜓 𝑟𝑟

𝜓𝜓 𝑟𝑟 = 𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟𝑢𝑢𝑛𝑛,𝑘𝑘 𝑟𝑟
k is called crystal momentum.
Good quantum number (conserved).
k+G is the same as k (Umklapp process).



Translational and Rotational Symmetry
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• Not every rotational symmetry is compatible with translational invariance.
• For example, five-fold and seven-fold symmetries cannot occur in crystals. 

• Only the following rotational symmetries can occur:
• 0° or 360°
• 60° six-fold
• 90° four-fold
• 120° three-fold
• 180° two-fold

n-fold rotation:
Rotation by angle θ=2π/n
n=1, 2, 3, 4, 6



Proof: Translational and Rotational Symmetry
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For a rotation about z-axis with angle θ=2π/n, show that n=1,2,3,4, or 6.

Step 1: There is a translation vector in xy-plane perpendicular to z-axis.
Assume T is any translation vector.
Then T’=R(θ)T is also a translation vector.
The difference T-T’ is a translation vector perpendicular to the z-axis.

Step 2: Assume that R is shortest translation vector perpendicular to z.
R’=R(θ)R and R’-R also translation vectors perpendicular to z-axis.
See Figure. This implies that R-R’ must be longer than R.

2𝑅𝑅 sin
𝜋𝜋
𝑛𝑛
≥ 𝑅𝑅

𝑛𝑛 ≤ 6

n=1,2,3,4,6

Exclude five-fold 
symmetry (n=5) with 
specific argument. 
See M. Tinkham, Group Theory

90°



Six Crystal Families, Seven Crystal Systems
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• Not every rotational symmetry is compatible with translational invariance.

• Only one-, two-, three, four-, and six-fold symmetries occur.
• Therefore, we have six crystal families (seven crystal systems).

Trigonal



Centered Bravais Lattices
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• Face-centered, body-centered, base-centered Bravais Lattices
• Primitive cell has low symmetry, 

but centered Bravais lattice symmetry is higher (larger conventional cell).

SC: 1 point/cell
BCC: 2 points/cell
FCC: 4 points/cell

BCC

1

FCC



Fourteen Bravais Lattices
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Seven crystal systems 
become fourteen (14) 
Bravais lattices with 
centering.

P simple
I body-centered
F face-centered
C base-centered



Crystal Structures
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• Crystal=Lattice+Basis
• A crystal structure is defined by 

• one of 14 Bravais lattices
• basis vectors (coordinates of atoms within the cell): Wyckoff positions

• 230 space groups (rotations, reflections, inversion, etc, plus translations)
• 32 point groups (elements of space groups, with translations set to zero)

BCC

FCC

• Only a few elements have just one atom 
per Bravais lattice cell.

• BCC metals: α-Fe, V, Nb, Ta, Cr, Mo, Na, etc
(8-fold coordination)

• FCC metals: Al, Cu, Au, Pb, Ni, Pt, Ag, etc
(12-fold coordination)

• HCP: is not a Bravais lattice



Examples of Crystal Structures
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See Rohrer

𝜏𝜏1 = 0; 𝜏𝜏2 =
𝑎𝑎
2

1,1,1

𝜏𝜏1 = 0; 𝜏𝜏2 =
𝑎𝑎
2

1,0,0 ; plus fcc

diamond, zinc blende

𝜏𝜏1 = 0; 𝜏𝜏2 =
𝑎𝑎
4

1,1,1 ; plus fcc

Point origin (cation or anion)
Also conventional origin (symmetric).
International Tables have both origins.

CsCl

NaCl

C, Si, Ge
GaAs



“Strukturbericht” Notation

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2 17 See Rohrer

Letter followed by number

A: Element
B: Binary compound (1:1)
C: Binary compound (1:2)
D: Complex binary
E: Ternary or more complex

Lower number, simpler structure.

Wyckoff positions

FCC

BCC

HCP



“Strukturbericht” Notation
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See Rohrer

Letter followed by number

A: Element
B: Binary compound (1:1)
C: Binary compound (1:2)
D: Complex binary
E: Ternary or more complex

Lower number, simpler structure.

C49, C54: silicides (TiSi2)
C4: rutile (TiO2)
D51: sapphire (Al2O3)
E21: perovskite (CaTiO3)
H11: spinel (MgAl2O4)

https://commons.wikimedia.org/wiki/Strukturbericht



Many materials have the 
same crystal structure.
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See Rohrer



Schoenflies notation for 32 point groups
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Cn n-fold rotation
i inversion
v vertical mirror plane
d diagonal mirror plane
h horizontal mirror plane
Dn dihedral group (Drehgruppe)

n C2 axes perpendicular to Cn
Sn improper rotation 

(Spiegelreflexion)
T tetrahedral symmetry
O cubic symmetry

n n-fold rotation
m mirror plane
n-bar Cn rotation followed by inversion
n/m mirror plane perpendicular to Cn

Also international (Hermann-Mauguin) notation.



Stereographic projections of 32 point groups
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Graphic representation of  
point group symmetries

Line mirror plane
Open circle inversion
Central symbol vertical n-fold axis 
Edge symbol horizonal n-fold axis

Cn n-fold rotation
i inversion
v vertical mirror plane
d diagonal mirror plane
h horizontal mirror plane
Dn dihedral group (Drehgruppe)

n C2 axes perpendicular to Cn
T tetrahedral symmetry
O cubic symmetry



Non-Symmorphic Space Groups

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2 22

• 32 point groups (all crystal symmetries with translation set to zero)
• 230 space groups
• 73 Symmorphic space groups:

Point group is a subgroup of the space group
• 157 Non-symmorphic space groups:

Some point group elements have 
non-primitive translations.
Screw axes and glide planes. 

Diamond structure has two equivalent sublattices.
Inversion must be followed by glide along (111).
Non-primitive translation by a/4(1,1,1).
This is called the d (diagonal, diamond) glide.
International Tables list non-primitive translations.

Glide plane:
reflection followed by translation



Non-Symmorphic Space Groups: Screw axis
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• 32 point groups (all crystal symmetries with translation set to zero)
• 230 space groups
• 73 Symmorphic space groups:

Point group is a subgroup of the space group
• 157 Non-symmorphic space groups:

Some point group elements have non-primitive translations.

Screw axis:
Cn rotation followed by 

translation along the axis

space group point group



International Tables of Crystallography
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• Notations for 230 Space Groups
• Space number from 1 to 230.
• International Notation
• Schoenflies symbol with superscript

LaAlO3

Symmetry operations

Wyckoff positions



Bilbao Crystallographic Server
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http://www.cryst.ehu.es

Brillouin zone, 
table of k-points

Also:
Character Table for Double Groups
Symmetries of Physical Tensors
Raman Tensors

LaAlO3

W. Setyawan and S. Curtarolo,
Comp. Mat. Sci. 49, 299 (2010).

IR

Raman

Raman



Nye: Physical Properties of 
Crystals

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2 26

𝐷𝐷 = 𝜀𝜀𝐸𝐸

D Dielectric displacement
E electric field
ε dielectric tensor

For crystal class -3m, 
the dielectric tensor
• has two independent diagonal 

components. 
• off-diagonal components are zero.

Also: Stress/strain, magnetic, piezo, …
Many different tensor properties.

LaAlO3



More Examples of Crystal Structures: Rutile TiO2
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See Rohrer

Internal parameter x



Examples of Crystal 
Structures: Spinel
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See Rohrer

Spinel AB2O4
A and B can be the same (Co)
Normal: 
B1+B2 octahedral, A tetrahedral
Inverse: 
A+B1 octahedral, B2 tetrahedral



Examples of Crystal 
Structures: Perovskite
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See Rohrer

ABX3

A can be organic molecule.
Perovskite solar cells.

SrTiO3



Drawing Crystal Structures with VESTA
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Download: http://jp-minerals.org/vesta
Copy to “Program Files” directory.
Download tutorial and example files.

Search for the crystal you want (say SrRuO3)
Download+open crystal metadata (*.CIF etc)
Calculate x-ray diffraction pattern.

SrRuO3
a=5.58 Å, b=7.84 Å, c=5.54 Å
α=β=γ=90° orthorhombic P
Space Group 62 Pnma or D2h

16

Four formula units per cell
Wyckoff positions
Sr (4c) 0.4375 0.25 0.0154
Ru (4a) 0 0 0 
O1 (8d) 0.1988 0.0528 0.3044
O2 (4c) 0.5323 0.25 0.5996

SrRuO3

http://jp-minerals.org/vesta


Classification of Lattice Vibrations (k=0)
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Long-wavelength (zone-center) lattice vibrations can be
• Infrared-active (transform like x, y, z)
• Raman-active (transform like xy, yz, zx or x2, y2, z2)
• Silent
• Transformation property can be found from point group character table.

If there are N atoms per primitive cell, there are 3N degrees of freedom.
• 3 acoustic phonons (translation of crystal), zero energy
• 3(N-1) optical phonons

Need to know:
• Bravais lattice+basis, point group, space group
• Wyckoff positions (where are the atoms?)
• How do the symmetry operations act on the atoms? Check International Tables.
• Call NR the number of invariant atoms for symmetry operator R
• Calculate character

• Decompose χ(R) into irreducible representations (using characters).
( ) ( )φχ cos2det += RNR R

See Dresselhaus, Dresselhaus, and 
Jorio, Group Theory (Springer, 2008)

Find representations for optical phonons?



Stefan Zollner, January 2019, Piezo 2019 Conference 32Stefan Zollner, March 2014 32Stefan Zollner, March 2014 32

Classification of Phonons in Metal Oxides

New Mexico State University

Space Group
Wyckoff positions

( ) ( )φχ cos2det += RNR R

6
3  or 3dD R c
LaAlO3

7  or 3hO Fd m
MgAl2O4

FTIR Ellipsometry
Loss function:
LO phonons

Dielectric function: 
TO phonons
Raman exp

Raman modes

Willett-Gies, Thin Solid Films, 2013
Zollner, Thin Solid Films, 2013

LO LO

TO TO

LaAlO3

MgAl2O4

3.03.222
TO,

2
LO, ±== ∏∞

i i

i
s ω

ω
εε

2.08.72
TO,

2
LO, ±== ∏∞

i i

i
s ω

ω
εε



Origin of the Spin in Quantum Mechanics
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• “The spin is a purely relativistic effect because it is derived from the Dirac 
equation” (not true!).

• In my opinion, the spin is derived from the unknown phase of the wave 
function in non-relativistic quantum mechanics.

• Mathematical theorem: “The finite-dimensional projective representations 
of a compact Lie Group are identical to the representations of its 
universal covering group.”

• We need to take a few minutes to understand what this means. 

• Wahrheit und Klarheit sind komplementär.
(Attributed to Niels Bohr)
Truth and clarity are mutually exclusive. 

Wikipedia: Look up “Projective Representation”



Representations in Quantum Mechanics
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• Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
• The allowed energies are E1, E2, …
• The eigenstate with energy Ei has degeneracy gi. 

The eigenfunctions ψ1, ψ2, …, ψgi for this eigenstate form a vector space.

• If the Hamiltonian is invariant under a group of symmetry operations R, then the 
vector spaces of eigenfunctions for the eigenstates are also invariant under this 
symmetry operation.

• Noether: A representation is a vector space (of eigenfunctions) together with an 
operation which tells us how the eigenfunctions transform under the symmetry 
operations:

Rψj=ΣCij(R)ψi character: χ(R)=Trace(Cij)
• But: This definition is too restrictive for quantum mechanics, since two wave 

functions describe the same state, if they only differ by a complex factor.
• Classes of wave functions: 

[ψ]=[reiφψ]



Projective Representations
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• Consider a quantum-mechanical system (like a H atom) with Hamiltonian H.
• The allowed energies are E1, E2, …
• The eigenstate with energy Ei has degeneracy gi. 

The classes of eigenfunctions [ψ1], [ψ2], …, [ψgi] form a vector space.

• If the Hamiltonian is invariant under a group of symmetry operations R, then the 
vector spaces of classes of eigenfunctions for the eigenstates are also invariant 
under this symmetry operation.

• A projective representation is a vector space (of classes of eigenfunctions) 
together with an operation which tells us how the classes of eigenfunctions
transform under the symmetry operations:

R[ψj]=ΣCij[ψi]

• The coefficients Cij are only defined up to a complex factor.



Introduction to Algebraic Topology
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The finite-dimensional projective representations of a compact
Lie Group are identical to the representations of its universal 
covering group.

Compact: Each open cover has a finite subcover.
(=>closed and bounded)

sphere torus
(doughnut)

Klein
bottle

Möbius
loop



Connected Spaces
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A topological space is called connected, if it cannot be 
represented as a union of two or more disjoint nonempty open 
subsets. 

For any two points, I can find a path connecting the two points.

Green space E 
is not connected.

A through D are 
connected



Simply Connected Spaces
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A topological space is called simply connected, if every closed 
loop can be contracted into a point.

The sphere is simply connected, but the 
torus is not.

The colored paths in the torus cannot 
be deformed into a point.

Fundamental group ZxZ (winding number)



Simply Connected Spaces
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A topological space is called simply connected, if every closed 
loop can be contracted into a point.

A and B are
simply connected.

C and D are
multiply connected.

Karlovy Vary cup 
has two holes (top 
and bottom) in its 
straw handle.



Universal Covering Space
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Problem statement:
SU(n) group special unitary matrices: simply connected.
SO(n) group of special orthogonal matrices: multiply connected

fundamental group Z/2={0,1} for n≥3 (4π rotation)

Universal covering space:
If X is a topological space that is path connected, locally path connected, and 
locally simply connected, then it has a simply connected universal covering 
space.
Examples:
Circle: infinitely long line (spiral)
Torus: two-dimensional plane
SO(3): SU(2)
U(n): SU(n)xR

covering



Projective Representations of SO(3)
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Rotational SO(3) invariance of a Hamiltonian implies that angular momentum 
is conserved. Every angular momentum state belongs to a projective 
representation of SO(3), i.e., a representation of SU(2).  
SO(3) E R(φ)

Γ𝑙𝑙: 𝑌𝑌𝑙𝑙𝑙𝑙 𝜃𝜃,𝜑𝜑 2l+1 ⁄sin ⁄2𝑙𝑙 + 1 𝜑𝜑 2 sin ⁄𝜙𝜙 2

l=0 (s) 1 1
l=1 (p) 3 ⁄sin ⁄3𝜑𝜑 2 sin ⁄𝜙𝜙 2
l=2 (d) 5 ⁄sin ⁄5𝜑𝜑 2 sin ⁄𝜙𝜙 2
l=3 (f) 7 ⁄sin ⁄7𝜑𝜑 2 sin ⁄𝜙𝜙 2
etc.
l=1/2 2 ⁄sin 𝜑𝜑 sin ⁄𝜙𝜙 2
l=3/2 4 ⁄sin 2𝜑𝜑 sin ⁄𝜙𝜙 2
l=5/2 6 ⁄sin 3𝜑𝜑 sin ⁄𝜙𝜙 2
etc.

Integral angular momentum

Half-integral angular momentum

Double-group

Extra representations



Double Groups and Extra Reps for Point Groups
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We also need integral and half-integral representations for point groups and 
space groups. The X-point in the diamond structure is special, where all 
levels are doubly-degenerate (topological protection). 

Integral angular momentum

Half-integral angular momentum

Double-group

Extra representations

All tables at  http://www.cryst.ehu.es
Also R.J. Elliot, Phys. Rev. 96, 280 (1954).

http://www.cryst.ehu.es/


Crystal-Field Splitting
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States with angular momentum j are split by the lower symmetry 
of the crystal. Example: Cubic group O.

l=0
l=1
l=2
l=3

No splitting for s
No splitting for p

No splitting for j=1/2
No splitting for j=3/2

Allowed degeneracies in cubic symmetry: 1,2,3,4.
All other (>5) will split.
Additional splitting if symmetry lower than cubic.



Lowering of Symmetry

Stefan Zollner, February 2019, Optical Properties of Solids Lecture 2 44

Symmetry can be lowered in various ways:
• Wyckoff position has lower symmetry than the crystal.
• Moving away from the Brillouin zone center (group of k).
• Applying an external field (strain, electric, magnetic field, etc).
• Lowering the symmetry of the crystal 

(Jahn-Teller effect, cubic to wurtzite, etc).

LO/TO phonons in GaP LO/TO phonons in ZnO

Γ15



Band Structure of Silicon and Germanium
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Need “extra representations” for Ge 
because of strong spin effects.

Yu and Cardona, Fundamentals of 
Semiconductors (Springer, 2010)



Band Inversion: Topological Insulators
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Germanium

p

s*

α-tin

p

p

p*

s*

j=1/2

j=3/2

Band gap must be zero.
Symmetry inversion in VB.

Linear crossing
(Dirac point)
Inversion Symmetry



Matrix Elements: Selection Rules
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Problem Statement:
• Initial state: symmetry Γi
• Final state: symmetry Γf
• Interaction Hamiltonian: symmetry ΓH
Question: 
Is the transition from <i| to <f| allowed?
Is the matrix element <f|H|i> zero (i.e., transition forbidden).

Answer: The transition is forbidden, unless the final state symmetry Γf is 
contained in the product of Γi and ΓH.
This calculation uses character tables (or similar tools).

Example: 
Optical transition from Γ7

+ to Γ7
- (E0’+∆0) forbidden in Ge. 

Note: Selection rules are relaxed, if symmetry is lowered.
(If we lose the inversion symmetry, parity rules go away.)



Summary
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For a given crystal structure, we can
• Draw the Brillouin zone, find atomic coordinates.
• Label the symmetries of the electron wave functions (band structure)
• Determine crystal field splittings when reducing symmetry.
• Find the long-wavelength infrared-active and Raman-active phonon modes.
• Look up systematic extinctions in x-ray diffraction spectra.
• Calculate selection rules tor transition matrix elements.
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