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Abstract. The second order linear difference equation

(1) ∆(rk∆xk) + ckxk+1 = 0,

where rk 6= 0 and k ∈ � , is considered as a special type of symplectic systems. The
concept of the phase for symplectic systems is introduced as the discrete analogy of the
Bor̊uvka concept of the phase for second order linear differential equations. Oscillation and
nonoscillation of (1) and of symplectic systems are investigated in connection with phases
and trigonometric systems. Some applications to summation of number series are given,
too.

Keywords: second order linear difference equation, symplectic system, phase, oscillation,
nonoscillation, trigonometric transformation

1. Introduction

In the fifties, O.Bor̊uvka developed an original and fruitful theory of global trans-

formation of linear differential equations of the second order in the real domain. To

this purpose he introduced the phase theory of these equations and using it he solved

some open problems concerning the qualitative theory of a global character. These

results were surveyed in the monograph [5] and were extended in several directions—

for linear differential equations of an arbitrary order by F. Neuman [8], for second

order linear differential equation in the complex domain by S. Staněk [9], for linear

differential systems by O.Došlý [6]. Concerning the extensive literature on this topic
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we refer to [5], [8], [10] and references therein. Here we show how it is possible to

extend some results of the Bor̊uvka theory of phases to the discrete case.

We consider a linear difference equation of the second order

(1) ∆(rk∆xk) + ckxk+1 = 0, k ∈ �

where (rk), (ck) are sequences of real numbers such that rk 6= 0, and a symplectic

difference system

(S)

(

xk+1

uk+1

)

=

(

ak bk
ck dk

) (

xk

uk

)

, k ∈ �

where (ak), (bk), (ck), (dk) are sequences of real numbers such that akdk − bkck = 1.

Under this assumption the matrix Sk in (S) is symplectic, i.e. it satisfies

ST
k JSk = J with J =

(

0 1

−1 0

)

,

where T stands for the transpose of the matrix indicated.

Difference equation (1) can be written as a system of two equations of the first

order for (xk , uk) = (xk , rk∆xk)

∆xk =
1

rk
uk, ∆uk = −ckxk+1

and, in turn, as a symplectic system

(G)

(

xk+1

uk+1

)

=

(

1 1
rk

−ck 1 − ck

rk

) (

xk

uk

)

.

The aim of this paper is to introduce phases of difference equations and symplec-

tic systems in a similar manner as for differential equations, to classify symplectic

systems with respect to their oscillatory properties and to study oscillatory and

nonoscillatory properties of these systems on � in terms of phases.
The plan of the paper is the following. In §2 we explain why we consider equation

(1) as a special case of symplectic system (S)—the reason is the discrepancy between

the reciprocity of the linear differential and difference equations of the second order.

The lack of a convenient class of self-reciprocal difference equations makes it necessary

to consider the wider class of equations than equations of the form (1) and, as we

will show, such a class is the class of symplectic difference systems (S). The basic

notions for (S) and some properties of the self-reciprocal systems, which are called

trigonometric systems, are also given in §2. §3 is devoted to the trigonometric

transformation and further properties of trigonometric systems. The concept of the
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phase for symplectic difference systems is introduced in §4. In §5 oscillatory and

nonoscillatory properties of these systems are described in terms of phases and an

application of phases to the summation of number series is given.

2. Preliminaries

An important role in the Bor̊uvka theory of phases for second order differential

equations is played by the property of reciprocity and self-reciprocity. So, let us

compare the reciprocity in the continuous and the discrete case.

Consider a second order linear differential equation

(2) (r(t)x′)′ + c(t)x = 0, t ∈ (a, b),

where r, c are real-valued continuous functions on (a, b), r(t) > 0, and −∞ 6 a < b 6

∞. If x is a solution of (2) and c(t) 6= 0, then y = rx′ is a solution of the reciprocal

equation to (2)
(

1

c(t)
y′

)

′

+
1

r(t)
y = 0.

An equation is said to be self-reciprocal if it coincides with its reciprocal equation.

The starting point of the Bor̊uvka phase and transformation theory for differential

equations (2) is based on the fact that in the class of all globally equivalent (trans-

formable) differential equations (2) there exists a self-reciprocal equation which is

chosen as the canonical form of this class. More precisely, if x1, x2 are two lin-

early independent solutions of (2) with the Wronskian w ≡ r(x′1x2 − x1x
′

2) ≡ 1 and

h(t) =
√

x2
1(t) + x2

2(t), then the transformation x(t) = h(t)y(t) transforms equation

(2) into the self-reciprocal equation

(q)

(

1

q(t)
u′

)

′

+ q(t)u = 0, q(t) =
1

r(t)h2(t)
.

The transformation of the independent variable s(t) =
∫ t
q(τ) dτ transforms this

equation into the equation y′′(s) + y(s) = 0, s ∈ (α, β), therefore solutions of (2) are

functions

(3) x1(t) = h(t) sin

∫ t

q(τ) dτ, x2(t) = h(t) cos

∫ t

q(τ) dτ.

In the discrete case, if ck 6= 0, rk 6= 0 and xk is a solution of (1) then yk = rk∆xk

is a solution of the reciprocal equation

∆

(

1

ck
∆yk

)

+
1

rk+1
yk+1 = 0.
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The form of the reciprocal equation shows that no difference equation of the form

(1) is self-reciprocal except the equation ∆2xk + xk+1 = 0 which is oscillatory on �
and so does not seem to be a good representative of nonoscillatory equations on � .
This fact makes the main difference in establishing the phase theory for continuous

and discrete equations.

In the sequel, we will need the following definitions (see e.g. [1]) and auxiliary

results for 2 × 2 symplectic systems (S).

A pair of solutions z[1] =
(

xk

uk

)[1]
, z[2] =

(

xk

uk

)[2]
of (S) with the Casoratian w ≡

x
[1]
k u

[2]
k − x

[2]
k u

[1]
k = 1 is said to be a normalized basis of system (S).

Definition 1. The reciprocal system to (S) is the symplectic system with the

matrix Sk = J−1SkJ , i.e. the system

(Sr)

(

xk+1

uk+1

)

=

(

dk −ck

−bk ak

) (

xk

uk

)

.

System (S) is said to be self -reciprocal if it coincides with its reciprocal system.
������� �"!

1. From Definition 1 it follows that if
(

xk

uk

)

is a solution of (S) then
(

uk

−xk

)

is a solution of its reciprocal system (Sr).

Any symplectic self-reciprocal system (S) takes the form

(T)

(

sk+1

ck+1

)

=

(

pk qk
−qk pk

) (

sk

ck

)

where p2
k + q2k = 1. Such a system is called the trigonometric system because any

of its solutions can be expressed using the functions sin, cos as the following lemma

shows.

Lemma 1. Let ϕk ∈ [0, 2 # ), k ∈ � , be defined by the relations

(4) sinϕk = qk, cosϕk = pk.

Then the general solution of (T) is of the form
(

sk

ck

)

= β

(

sin(ξk + α)

cos(ξk + α)

)

where k ∈ � , α, β ∈ $ and (ξk) is any sequence such that ∆ξk = ϕk.
%&�"'('*)

. By direct computation and Remark 1 it follows that

(

sk

ck

)[1]

=

(

sin ξk
cos ξk

)

,

(

sk

ck

)[2]

=

(

cos ξk
− sin ξk

)

forms a basis of system (T). Hence any solution is a linear combination of these two

solutions. �
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Definition 2. An interval (m,m + 1] is said to contain a generalized zero of a

solution
(

xk

uk

)

of system (S) if xm 6= 0 and

xm+1 = 0 or bmxmxm+1 < 0.

System (S) is said to be nonoscillatory at +∞ if there exists k0 ∈ + such that every
solution of (S) has at most one generalized zero on [k0,∞), and it is said to be oscil-

latory at +∞ in the opposite case. In a similar way, the oscillation [nonoscillation]

of (S) at −∞ is defined.
������� �"!

2. If (S) is nonoscillatory at +∞, then for every solution
(

xk

uk

)

of this

system there exists k1 ∈ + such that either xk = 0 for k > k1 or xk 6= 0 and

bkxkxk+1 > 0 for k > k1.
������� �"!

3. If bm = 0 and xm 6= 0 for some m ∈ � then xm+1 6= 0, i.e. (m,m+1]

does not contain a generalized zero. Indeed, since amdm − bmcm = 1, we have

am 6= 0 and thus xm+1 = amxm 6= 0. Hence, if bk ≡ 0 for all k ∈ � then any
nontrivial solution of (S) has no generalized zero.
������� �"!

4. Observe that the Sturm type separation theorem holds for symplec-

tic systems, see e.g.Theorem 1 and its proof in [2]. This means that the number of

generalized zeros of any pair of solutions differs at most by 1.

Similarly to the continuous case, for nonoscillatory symplectic systems there exist

the so called recessive solutions having a certain extremal property at +∞ as the

following lemma shows.

Lemma 2. Let system (S) be nonoscillatory at+∞. Then there exists a nontrivial

solution
(

xk

uk

)

of (S) with the property

(5) lim
k→+∞

xk

x̃k

= 0

for any other linearly independent solution
(

x̃k

ũk

)

of (S). The solution
(

xk

uk

)

is called

the recessive solution at +∞ and is given uniquely up to a nonzero constant multiple.
%&�"'('*)

. Let
(

xk

uk

)

,
(

x̃k

ũk

)

be linearly independent solutions of (S) with a (constant)

Casoratian w 6= 0. By direct computation we get

∆
( x̃k

xk

)

=
∆x̃kxk − x̃k∆xk

xkxk+1

=

(

(ak − 1)x̃k + bkũk

)

xk − x̃k

(

(ak − 1)xk + bkuk

)

xkxk+1

=
bk(xkũk − ukx̃k)

xkxk+1
=

wbk
xkxk+1

.
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Since (S) is nonoscillatory at +∞, there exists k1 ∈ + such that either xk = 0 for

k > k1 or xk 6= 0 and bkxkxk+1 > 0 for k > k1. In the former case uk 6= 0 and,

because w = xkũk − x̃kuk 6= 0, x̃k 6= 0 for k > k1 and (5) holds. In the latter case

bk/(xkxk+1) > 0, hence the sequence x̃k/xk is monotone for k > k1 and there exists

a limit L = lim
k→+∞

x̃k/xk. If L = ∞ or L = 0, then
(

x̃k

ũk

)

or
(

xk

uk

)

is the recessive

solution, respectively. If 0 < L < ∞ then the solution
(

x̃k

ũk

)

− L
(

xk

uk

)

is the recessive

one.

The uniqueness of the recessive solution follows from (5)—if there existed two lin-

early independent recessive solutions then lim
k→+∞

x
[1]
k /x

[2]
k = 0 and lim

k→+∞

x
[2]
k /x

[1]
k =

0, a contradiction. �

Analogously, if (S) is nonoscillatory at −∞ then there exists a solution
(

xk

uk

)

with

the property lim
k→−∞

xk/x̃k = 0 and it is called the recessive solution at −∞.

Lemma 3. Let the trigonometric system (T) be nonoscillatory at +∞ and let

z[+∞] be a recessive solution of (T) at +∞. Then lim
k→+∞

sk = 0.

%&�"'('*)
. By the self-reciprocity of (T) and by Remark 1, solutions

(

sk

ck

)

,
(

ck

−sk

)

form the basis of system (T) . Since ck is bounded, we have lim
k→+∞

sk/ck = 0 if and

only if lim
k→+∞

sk = 0. �

Lemma 4. Let (S) be nonoscillatory at +∞, let z[+∞] be its recessive solution

at +∞ and let the interval (m,m+ 1] contain the largest generalized zero of z [+∞].

Then any solution of (S) which is linearly independent of z[+∞] has a generalized

zero in [m,∞).

%&�"'('*)
. If bk ≡ 0 for large k then the statement is obvious. In the opposite case

the proof is the same as for the linear Hamiltonian system, see [4, Theorem 1]. �

Lemma 5. Let (S) be nonoscillatory at +∞ and at −∞. Then recessive solutions

of (S) at −∞ and at +∞ have the same number of generalized zeros.

%&�"'('*)
. Let z[+∞] be the recessive solution of (S) at +∞ and let z[−∞] be the

recessive solution of (S) at −∞. If z[−∞] and z[+∞] are linearly dependent, then the

statement holds. Assume that z[−∞], z[+∞] are linearly independent. By Remark 4,

the number of their generalized zeros differs at most by 1. Suppose by contradiction

that z[−∞] has k−1 generalized zeros and z[+∞] has k generalized zeros on � . Let the
interval (m,m+1] contain the largest generalized zero of z [+∞]. Then by the Sturm

separation theorem (see Remark 4) the interval [m,∞) contains no generalized zero

of z[−∞], which contradicts Lemma 4. The same arguments hold in the opposite

case. �
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3. Trigonometric transformations

In this section we study the problem of transformation of any system (S) into a

trigonometric system (T) and show that the trigonometric system (T) can be viewed

as a discrete analogue of the self-reciprocal differential equation (q).

We start with some general facts concerning transformations of 2 × 2 symplectic

systems. Let

Rk =

(

hk lk
gk mk

)

be a 2 × 2 symplectic matrix, i.e.hkmk − gklk = 1. The transformation

(6)

(

xk

uk

)

= Rk

(

yk

vk

)

transforms system (S) into the system

(7)

(

yk+1

vk+1

)

= Sk

(

yk

vk

)

, Sk = R−1
k+1SkRk

and this system is again a symplectic system because symplectic matrices form a

group with respect to multiplication. Moreover, if lk ≡ 0 then hk 6= 0, mk = 1/hk

and the transformation (6) preserves generalized zeros, i.e. the interval (m,m + 1]

contains a generalized zero of a solution
(

xk

uk

)

of system (S) if and only if it contains a

generalized zero of the solution
(

yk

vk

)

of system (7). Indeed, if xm 6= 0 and xm+1 = 0

or bmxmxm+1 < 0, then ym = h−1
m xm 6= 0 and

ym+1 = h−1
m+1xm+1 = 0 or bmymym+1 =

1

(hmhm+1)2
bmxmxm+1 < 0.

In [3, Th. 3.1] the following trigonometric transformation was stated for 2n × 2n

symplectic systems.

Theorem A. Let z[1] =
(

xk

uk

)[1]
, z[2] =

(

xk

uk

)[2]
form a normalized basis of (S) and

let

(8) h2
k =

(

x
[1]
k

)2
+

(

x
[2]
k

)2
, gk =

x
[1]
k u

[1]
k + x

[2]
k u

[2]
k

hk

.

Then the transformation

(9)

(

xk

uk

)

=

(

hk 0

gk 1/hk

) (

sk

ck

)

299



transforms system (S) into the trigonometric system (T) with

(10) pk =
1

hk+1
(akhk + bkgk), qk =

1

hkhk+1
bk

without changing the oscillatory behavior. The sequence (hk) satisfying (8) can be

chosen in such a way that qk > 0 and if in addition bk 6= 0, then it can be chosen in

such a way that qk > 0 for k ∈ � .
Definition 3. Let (z[1], z[2]) be a normalized basis of system (S). Transforma-

tion (9) with h, g given by (8) is said to be a trigonometric transformation of the

basis (z[1], z[2]), and system (T) with p, q given by (10) and qk > 0 is said to be a

trigonometric system of the basis (z[1], z[2]). The trigonometric system of any basis

of system (S) is said to be an associated trigonometric system to system (S).

The following lemma plays a crucial role in our later consideration. It shows that

solutions of 2×2 symplectic systems can be expressed by means of a certain solution

of (T) and can be regarded as a discrete version of (3).

Lemma 6. Let z[1] =
(

xk

uk

)[1]
, z[2] =

(

xk

uk

)[2]
be a normalized basis of (S) and let

(T) be a trigonometric system of this basis. Then there exists a solution
(

sk

ck

)

of (T)

such that

(11)

(

x
[1]
k

u
[1]
k

)

=

(

hk 0

gk
1

hk

) (

sk

ck

)

,

(

x
[2]
k

u
[2]
k

)

=

(

hk 0

gk
1

hk

) (

ck

−sk

)

,

where k ∈ � , (hk), (gk) are given by (8),

(12)

(

sk

ck

)

=

(

sin ξk

cos ξk

)

,

and (ξk) is an arbitrary sequence such that ∆ξk = ϕk and ϕk ∈ [0, # ) satisfy (4).

%&�"'('*)
. By Theorem A there exist solutions

(

sk

ck

)[1]
,
(

sk

ck

)[2]
of (T) such that

(13)

(

x
[1]
k

u
[1]
k

)

=

(

hk 0

gk
1

hk

) (

s
[1]
k

c
[1]
k

)

,

(

x
[2]
k

u
[2]
k

)

=

(

hk 0

gk
1

hk

) (

s
[2]
k

c
[2]
k

)

,

that is,

s[1] = h−1x[1], c[1] = −gx[1] + hu[1], s[2] = h−1x[2], c[2] = −gx[2] + hu[2].

By direct computation we have

(14) s[1]c[2] − c[1]s[2] = 1
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and

(s[1])2 + (c[1])2 =
(x[1])2

h2
+ g2(x[1])2 − 2ghx[1]u[1] + (u[1])2h2

= (x[1])2
(

1

h2
+

(x[1]u[1] + x[2]u[2])2

h2
− (u[1])2

)

+ (x[2]u[1])2 − 2x[1]x[2]u[1]u[2]

=

(

x[1]

h

)2

((x[1]u[2] − x[2]u[1])2 + (x[1]u[1] + x[2]u[2])2

− (x[1])2(u[1])2 − (x[2])2(u[1])2)

+ (x[2]u[1])2 − 2x[1]x[2]u[1]u[2]

= (x[1]u[2])2 + (x[2]u[1])2 − 2x[1]x[2]u[1]u[2]

= (x[1]u[2] − x[2]u[1])2 = 1.

Similarly, we have (s[2])2 + (c[2])2 = 1. By Lemma 1 there exist real constants α[i],

β[i] for i = 1, 2 such that

(

s
[1]
k

c
[1]
k

)

= β[1]

(

sin
(

ξk + α[1]
)

cos
(

ξk + α[1]
)

)

,

(

s
[2]
k

c
[2]
k

)

= β[2]

(

sin
(

ξk + α[2]
)

cos
(

ξk + α[2]
)

)

,

where (ξk) is an arbitrary sequence such that ∆ξk = ϕk and (ϕk) is given by (4).

Since (s[i])2 +(c[i])2 = 1, we have β[i] = 1 for i = 1, 2. In addition, by (14) we obtain

s[1]c[2] − c[1]s[2] = sin
(

ξk + α[1]
)

cos
(

ξk + α[2]
)

− sin
(

ξk + α[2]
)

cos
(

ξk + α[1]
)

= sin
(

α[1] − α[2]
)

= 1,

that is α[2] −α[1] = 1
2 # (mod 2 # ). Hence s[2] = c[1], c[2] = −s[1] and (11) holds. Since

(ξk) was arbitrary such that ∆ξk = ϕk, changing ξk to ξk − α[1] we get (12). �

Lemma 7. Trigonometric transformation (9) of any basis of system (S) transforms

the recessive solution of system (S) at +∞ [at −∞] into the recessive solution at +∞

[at −∞] of any associated trigonometric system (T) to (S).

%&�"'('*)
. Let

(

xk

uk

)

be a recessive solution at +∞ of system (S). By (5) and (9),

we conclude

lim
k→+∞

xk

x̃k

= lim
k→+∞

hksk

h̃ks̃k

= 0,

i.e.
(

sk

ck

)

is a recessive solution at +∞ of system (T). �
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4. The phase of symplectic difference systems

The trigonometric transformation and trigonometric systems enable us to intro-

duce phases for 2× 2 symplectic systems and for second order linear difference equa-

tions.

We start with the continuous case where the phase of equation (2) is defined in the

following way. Let u, v be linearly independent solutions of (2) with the Wronskian

w ≡ 1. A function α ∈ C3 is called a phase of the basis (u, v), if

tanα(t) =
u(t)

v(t)
for t ∈ (a, b)

except at the zeros of v. Observe that α is uniquely determined by the continuity at

the zeros of v. The phase of equation (2) is any phase of a basis of this equation.

In the discrete case, based on Theorem A and Lemma 1, we proceed in a similar

way and introduce the following definition.
,-' ./�0."12'43

. Arctan and Arccot denote the particular branch of the multivalued

function arctan with the image (− # /2, # /2) and of the function arccot with the image

(0, # ), respectively.
Definition 4. Let z[1] =

(

xk

uk

)[1]
, z[2] =

(

xk

uk

)[2]
be a normalized basis of system

(S). By a phase of the basis (z[1], z[2]) we understand any sequence ψ = (ψk), k ∈ � ,
such that ∆ψk ∈ [0, # ) and

ψk =







arctan
x
[1]
k

x
[2]
k

if x
[2]
k 6= 0,

odd multiple of 52 if x
[2]
k = 0.

The phase of system (S) is any phase of a basis of this system.

Obviously, if ψ is a phase of the basis (z[1], z[2]) then ψ + k # , k ∈ � is a phase of
this basis as well. Conversely, if ψ[1], ψ[2] are two phases of the basis (z[1], z[2]), then

ψ[1] − ψ[2] = 0 (mod # ).
The next theorem shows the fundamental relation between the phase of a given

basis of (S) and the trigonometric system of this basis.

Theorem 1. Let (z[1], z[2]) be a normalized basis of system (S), ψ a phase of this

basis and let (T) be the trigonometric system of this basis, i.e. the system (T) with

p, q satisfying (10) and qk > 0. Then sin ∆ψk = qk, cos∆ψk = pk, that is,

(15) ∆ψk = Arccot
pk

qk

if qk > 0 and ∆ψk = 0 if qk = 0.
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%&�"'('*)
. Let (T) be the trigonometric system and ψ a phase of the basis

(z[1], z[2]). By Lemma 6 there exists a solution
(

sk

ck

)

of (T) such that sk = sin ξk,

ck = cos ξk and z
[i] =

(

xk

uk

)[i]
, i = 1, 2 satisfy

(16) x
[1]
k = hk sin ξk, x

[2]
k = hk cos ξk,

where h is given by (8) and ∆ξk = ϕk. Since qk > 0 we have ϕk ∈ [0, # ) and (4)
holds. Hence for x

[2]
k 6= 0,

tan ξk =
x

[1]
k

x
[2]
k

.

On the other hand, by Definition 4,

(17) tanψk =
x

[1]
k

x
[2]
k

for all k ∈ � for which x[2]
k 6= 0, and ψk = 52 (mod # ) when x

[2]
k = 0. Consequently,

ψk = ξk (mod # ). This together with the fact that ∆ψk = ∆ξk = ϕk ∈ [0, # ) gives
the conclusion. �

The relationship between the phases of two different bases of system (S) is similar

to the continuous case (see [5], pp. 43 and 46) and is given by the following theorem.

Theorem 2. If ψk, ψk are two phases of the same symplectic system (S) then

there exist a, b, c, d such that ad− bc = 1 and

tanψk =
a tanψk + b

c tanψk + d

for all k for which this expression has a sense.
%&�"'('*)

. Let (z[1], z[2]) and (z[1], z[2]) be normalized bases of system (S) which

determine the phase ψ and ψ, respectively. There exist constants a, b, c, d ∈ $ such
that

z[1] = az[1] + bz[2], z[2] = cz[1] + dz[2].

Moreover, since (z[1])TJz[1] = 1, we have ad− bc = 1. Taking into account (17), we

get

tanψk =
x[1]

x[2]
=
ax[1] + bx[2]

cx[1] + dx[2]
=
a tanψk + b

c tanψk + d
.

�

The basic geometric interpretation of the phase of system (S) is the following.
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Theorem 3. System (S) is oscillatory at +∞ if and only if any phase ψk of this

system satisfies lim
k→+∞

ψk = ∞, i.e. there exists k0 ∈ + such that

(18)
∞
∑

k>k0, qk>0

Arccot
pk

qk
= ∞.

%&�"'('*)
. Let (z[1], z[2]) be a normalized basis of (S), ψk the phase and (T) the

trigonometric system of this basis. By Lemma 6 there exists a solution
(

sk

ck

)

of (T)

such that (11) and (12) hold. From this and Theorem 1 we have

sk = sinψk, ∆ψk ∈ [0, # ).

Hence the sequence {ψk} is nondecreasing and lim
k→+∞

ψk exists. Two cases are poss-

ible:

a) Assume lim
k→+∞

ψk = +∞. Since ψk+1 = ψk + ∆ψk < ψk + # , we have
sgn sinψk = −sgn sinψk+1 for infinitely many k and for these indices

qksksk+1 = qk sinψk sinψk+1 6 0.

We will show that the fact lim
k→+∞

ψk = +∞ implies bk 6≡ 0, i.e. qk 6≡ 0 for large k.

If bk ≡ 0 for large k then qk ≡ 0 and p2
k ≡ 1 for such k. The case pk = −1 gives

∆ψk = # , which is impossible in view of Definition 4. If pk ≡ 1 then ∆ψk ≡ 0

and {ψk} is an eventually constant sequence, a contradiction. Therefore there exist

infinitely many k for which qk > 0 and any nontrivial solution
(

sk

ck

)

of (T) satisfies

either sksk+1 < 0 or sk 6= 0 and sk+1 = 0 for these k’s. Hence, system (T) is

oscillatory and, by Theorem A, system (S) is oscillatory as well.

b) Assume lim
k→+∞

ψk < ∞. Since {ψk} is nondecreasing, there exists k0 such

that sinψk sinψk+1 > 0 for k > k0, which means sinψk sinψk+1 > 0 or ψk = ` #
(` ∈ � ) for k > k0. If qk > 0 for large k then qksksk+1 = qk sinψk sinψk+1 > 0 and

systems (T) and (S) are nonoscillatory. If qk ≡ 0 for large k (which includes the case

ψk = ` # ) then pk ≡ 1 and so sk = sk+1 for large k. Thus no solution of (T) has a

generalized zero in the neighbourhood of infinity and both systems (T) and (S) are

nonoscillatory.

Finally, taking into account (15) we get (18). �
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5. Nonoscillation in terms of phases

All solutions of the symplectic system (S) have the same oscillatory character, that

is to say they all have either a finite or an infinite number of generalized zeros on � .
In the first case system (S) is said to be of finite type or nonoscillatory, in the second

case of infinite type or oscillatory. More precisely, in accordance with O.Bor̊uvka,

we introduce the following classification of nonoscillatory symplectic systems.

Definition 5. Symplectic system (S) is said to be of finite type m, m ∈ + , if
this system possesses solutions with m generalized zeros in � but none with m + 1

generalized zeros.

If (S) is of finite type m, then it is called of general kind if it admits two linearly

independent solutions with m − 1 generalized zeros on � . Otherwise, system (S),
being of the finite type m, is of special kind.

Theorem 3 yields a criterion of boundedness of a phase as in the continuous case,

cf. [5, §5. 4].

Corollary 1. The phase ψ is bounded on � if and only if system (S) is of finite

type.

The type and kind of system (S) is the same as those of any associated trigono-

metric system and is uniquely determined by the boundary values of any phase ψ as

the following theorem states.

Theorem 4. The following statements are equivalent:

(a) Symplectic system (S) is of type m and of special kind on � .
(b) Any trigonometric system (T) associated to system (S) is of type m and of

special kind on � .
(c) Recessive solutions of (S) at ±∞ are linearly dependent and possess m − 1

generalized zeros.

(d) Any phase ψ of system (S) satisfies

(19)

+∞
∑

k=−∞

∆ψk = m # .

(e) Any trigonometric system (T) associated to system (S) satisfies

(20)

+∞
∑

k=−∞, qk>0

Arccot
pk

qk
= m # .
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%&�"'('*)
. “(a) ⇔ (b)” follows from the fact that the trigonometric transforma-

tion is a special case of the transformation (6) and, as has been shown in §3, such

transformation preserves generalized zeros.

“(a) ⇒ (c)”. Let (S) be of type m and of special kind. By Lemma 5 the recessive

solution z[−∞] at −∞ and the recessive solution z[+∞] at +∞ of (S) have the same

number of generalized zeros on � which is either m− 1 or m. Since (S) is of special

kind, only one solution has m − 1 generalized zeros. Thus if z [−∞] and z[+∞] are

linearly independent, they must have m generalized zeros and by Lemma 4 there

exists a solution with m+ 1 generalized zeros, which is a contradiction with the fact

that (S) is of type m. Consequently, z[−∞] and z[+∞] are linearly dependent and

have m− 1 generalized zeros.

“(c) ⇒ (d)”. Let ψ be a phase of (S) and let the recessive solutions of (S) at ±∞

be linearly dependent with m − 1 zeros. By Lemma 4, recessive solutions of (T) at

±∞ have the same property. Denote by
(

sk

ck

)[+∞]
the recessive solution of (T) at

+∞ and by
(

sk

ck

)[−∞]
the recessive solution at −∞. By Lemma 3,

lim
k→+∞

s
[+∞]
k = lim

k→−∞

s
[−∞]
k = 0.

Recessive solutions at +∞ and at −∞ are determined uniquely up to a nonzero

constant multiple and by a direct computation one can check that they are of the

form

(21) s
[+∞]
k = sin

∞
∑

j=k

ϕj and s
[−∞]
k = sin

k−1
∑

j=−∞

ϕj ,

where ϕk = ∆ψk. Since both these solutions are linearly dependent, we have

∞
∑

j=k

ϕj ±

k−1
∑

j=−∞

ϕj = ` # , ` ∈ � .

Passing k → −∞ and taking into account that s
[+∞]
k has m−1 zeros, we have ` = m,

m ∈ + . Using the fact that ϕk = ∆ψk we get (19).

“(d) ⇔ (e)” follows from (15).

“(e) ⇒ (b)”. Let (T) be a trigonometric system associated to (S) satisfying (20).

Let
(

sk

ck

)[+∞]
and

(

sk

ck

)[−∞]
be recessive solutions of (T) at +∞ and −∞, respectively.
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It follows from (21) that

s
[−∞]
k = sin

k−1
∑

j=−∞

ϕj = (−1)m sin

( k−1
∑

j=−∞

ϕj −m #
)

= (−1)m sin

( k−1
∑

j=−∞

ϕj −
∞
∑

j=−∞

ϕj

)

= (−1)m sin

(

−
∞
∑

j=k

ϕj

)

= (−1)m+1 sin

∞
∑

j=k

ϕj = (−1)m+1s
[+∞]
k ,

that is the recessive solutions at +∞ and −∞ are linearly dependent. In addition,

in view of (15),
∞
∑

j=k

ϕj < m # and

k−1
∑

j=−∞

ϕj < m # ,

so the recessive solutions have m− 1 generalized zeros. From here and Lemma 4 it

follows that (T) is of type m and of special kind. �

������� �"!
5. Claims (a), (b) and (d) can be regarded as a discrete version of the

Bor̊uvka theory of phases, cf. [5, §7. 2]. In accordance with this theory, denote the

number |c− d| =
+∞
∑

k=−∞

∆ψk by O(ψ), the so called oscillation of the phase ψ. From

Definition 5 and Theorem 4 it follows that (S) of finite type m is general or special

according as, for the oscillation of each of its phases ψ, we have (m−1) # < O(ψ) < m #
or O(ψ) = m # .
������� �"!

6. Coming back to difference equations, by a phase ψ of equation (1)

we mean any phase of the corresponding symplectic system (G). All statements of

§3, 4 can be formulated for difference equations using the corresponding system (G).

We conclude the paper with an application of Theorem 4 to difference equations

showing how the formula (20) can be used for the summation of certain number

series.

6 78� �:9<;2�
. Consider the second order linear equation

(22) ∆2xk = 0, k ∈ � .

This equation has linearly independent solutions x
[1]
k = 1, x

[2]
k = k such that

x
[1]
k ∆x

[2]
k − ∆x

[1]
k x

[2]
k = 1. The recessive solution at ±∞ is x

[1]
k = 1 and it satis-

fies the relation x
[1]
k x

[1]
k+1 > 0 for k ∈ � , i.e. has no generalized zero. Therefore the

equation is of finite type 1 and of special kind.
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Equation (22) can be written as a symplectic system (S) with ak = bk = dk = 1

and ck = 0. By Theorem A we have

pk

qk
= h2

k + x
[1]
k ∆x

[1]
k + x

[2]
k ∆x

[2]
k = x

[1]
k x

[1]
k+1 + x

[2]
k x

[2]
k+1 = 1 + k(k + 1) = k2 + k + 1.

Using Theorem 4 we get

+∞
∑

k=−∞

Arccot (k2 + k + 1) = # .

= '43?>@; A BC123<DE�"�F�G�0�"!�H
.

(1) One of the important applications of phases is the construction of difference

equations with prescribed properties. This will be given elsewhere.

(2) In the Bor̊uvka theory the phase α of the differential equation (2) is called the

first phase while the second phase β is defined as the first phase of the reciprocal

equation. The relation between both the phases α, β and among other types of

phases (hyperbolic phase) have been investigated. It is the subject of the present

investigation whether similar problems can be solved also in the discrete case.

References

[1] C.D.Ahlbrandt, A.C.Peterson: Discrete Hamiltonian Systems. Difference Equations,
Continued Fractions, and Riccati Equations. Kluwer Academic Publ., Boston, 1996.

[2] M.Bohner, O.Došlý: Disconjugacy and transformations for symplectic systems. Rocky
Mountain J. Math. 27 (1997), 707–743.

[3] M.Bohner, O.Došlý: Trigonometric transformations of symplectic difference systems.
J. Differential Equations 163 (2000), 113–129.

[4] M.Bohner, O.Došlý, W.Kratz: A Sturmian theorem for recessive solutions of linear
Hamiltonian difference systems. Applied Math. Letters 12 (1999), 101–106.

[5] O.Bor̊uvka: Lineare Differentialtransformationen 2. Ordnung. Hochschulbücher für
Mathematik. Band 67. VEB, Berlin, 1967; Linear Differential Transformations of the
Second Order, The English Univ. Press, London, 1971.

[6] O.Došlý: Phase matrix of linear differential systems. Čas. Pěst. Mat. 110 (1985),
183–192.

[7] O.Došlý, R.Hilscher: Linear Hamiltonian difference systems: transformations, reces-
sive solutions, generalized reciprocity. Dynamical Systems and Applications 8 (1999),
401–420.

[8] F.Neuman: Global Properties of Linear Ordinary Differential Equations. Mathematics
and Its Applications (East European Series), Kluwer Acad. Publ., Dordrecht, 1991.

[9] S. Staněk: On transformation of solutions of the differential equation y′′ = Q(t)y with a
complex coefficient of a real variable. Acta Univ. Palack. Olomucensis, F.R.N. 88 Math.
26 (1987), 57–83.

[10] P.Šarmanová: Otakar Bor̊uvka and Differential Equations. PhD. thesis, MU, Brno,
1998.

Authors’ addresses: Zuzana Došlá, Denisa Škrabáková, Department of Mathemat-
ics, Masaryk University, Janáčkovo nám. 2a, 662 95 Brno, Czech Republic, e-mails:
dosla@math.muni.cz, denisa@math.muni.cz.

308


