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Abstract. Integration by parts results concerning Stieltjes integrals for functions with
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Bilinear triples

Assume that X , Y and Z are Banach spaces and that there is a bilinear mapping

B : X×Y → Z. We use the short notation xy = B(x, y) for the value of the bilinear
form B for x ∈ X , y ∈ Y and assume that

‖B(x, y)‖Z = ‖xy‖Z � ‖x‖X‖y‖Y .

By ‖ · ‖X the norm in the Banach space X is denoted (and similarly for the other

ones).

Triples of Banach spaces X , Y , Z with these properties are called bilinear triples
and are denoted by B = (X, Y, Z) or shortly B.

This work was supported by the grant 201/97/0218 of the Grant Agency of the Czech
Republic
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Variation of functions with values in a Banach space

Assume that [a, b] ⊂ � is a bounded interval and that X is a Banach space. Given

x : [a, b]→ X , the function x is of bounded variation on [a, b] if

varba(x) = sup

{ k∑
j=1

‖x(αj)− x(αj−1)‖X

}
< ∞,

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b]. The set of all functions x : [a, b] → X with varba(x) < ∞ will

be denoted by BV ([a, b], X) or shortly BV ([a, b]) if it is clear which Banach space
X we have in mind.

Assume now that B = (X, Y, Z) is a bilinear triple of Banach spaces.

For x : [a, b]→ X and a partition D of the interval [a, b] define

V b
a (x, D) = sup

{∥∥∥∥
k∑

j=1

[x(αj)− x(αj−1)]yj

∥∥∥∥
Z

}
,

where the supremum is taken over all possible choices of yj ∈ Y , j = 1, . . . , k with
‖yj‖ � 1, and set

(B)varba(x) = supV b
a (x, D),

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b].

A function x : [a, b] → X with (B)varba(x) < ∞ is called a function with bounded
B-variation on [a, b] (sometimes also a function of bounded semi-variation [2], [3]).

The set of all functions x : [a, b] → X with (B)varba(x) < ∞ will be denoted
by (B)BV ([a, b], X) or shortly by (B)BV ([a, b]) if it is clear which bilinear triple

(X, Y, Z) we have in mind.

1. Proposition. If B = (X, Y, Z) is a bilinear triple then

(1) BV ([a, b], X) ⊂ (B)BV ([a, b], X)
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and if x ∈ BV ([a, b], X), then

(B)varba(x) � varba(x).

�����. For a given function x : [a, b] → X with x ∈ BV ([a, b], X), a partition
D of [a, b] and arbitrary yj ∈ Y , j = 1, . . . , k with ‖yj‖ � 1 we have

∥∥∥∥
k∑

j=1

(x(αj)− x(αj−1))yj

∥∥∥∥
Z

�
k∑

j=1

‖x(αj)− x(αj−1)‖X‖yj‖Y

�
k∑

j=1

‖x(αj)− x(αj−1)‖X � varba(x).

Passing to the suprema corresponding to the definition of (B)varba(x) in this inequal-
ity we immediately obtain the inclusion as well as the inequality claimed in the

statement. �

������. It is easy to show that if x : [a, b] → � and B = (�,�,�) with the
multiplication of reals as the corresponding bilinear form, then x ∈ (B)BV ([a, b]) if

and only if x ∈ BV ([a, b]).

Indeed, in this case we have

V b
a (x, D) = sup

{∣∣∣∣
k∑

j=1

[x(αj)− x(αj−1)]yj

∣∣∣∣
}
=

k∑
j=1

|x(αj)− x(αj−1)|

because we can take yj = 1 if x(αj)−x(αj−1) � 0 and yj = −1 if x(αj)−x(αj−1) < 0.
The same is true also if x : [a, b]→ X and B = (X,�, X), where the Banach space

X is finite-dimensional.

This shows that the concept of B-variation of a function x : [a, b]→ X is relevant
only for infinite-dimensional Banach spaces X .

Regulated functions and step functions with values in a Banach space

Assume that [a, b] ⊂ � is a bounded interval and that X is a Banach space. Given
x : [a, b]→ X , the function x is called regulated on [a, b] if it has one-sided limits at

every point of [a, b], i.e. if for every s ∈ [a, b) there is a value x(s+) ∈ X such that

lim
t→s+

‖x(t)− x(s+)‖X = 0
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and if for every s ∈ (a, b] there is a value x(s−) ∈ X such that

lim
t→s− ‖x(t)− x(s−)‖X = 0.

The set of all regulated functions x : [a, b]→ X will be denoted by G([a, b], X) or

shortly G([a, b]) if it is clear which Banach space X we have in mind.
If C([a, b], X) is the set of continuous functions x : [a, b]→ X then evidently

(2) C([a, b], X) ⊂ G([a, b], X).

Assume now that B = (X, Y, Z) is a bilinear triple of Banach spaces.
A function x : [a, b]→ X is called B-regulated on [a, b] if for every y ∈ Y , ‖y‖Y � 1

the function xy : [a, b] → Z given by t �→ x(t)y ∈ Z for t ∈ [a, b] is regulated,
i.e.xy ∈ G([a, b], Z) for every y ∈ Y, ‖y‖Y � 1.
Similarly y : [a, b]→ Y is called B-regulated on [a, b] if for every x ∈ X, ‖x‖X � 1

the function xy : [a, b] → Z given by t �→ xy(t) ∈ Z for t ∈ [a, b] is regulated,

i.e.xy ∈ G([a, b], Z) for every x ∈ X, ‖x‖X � 1.
For a given bilinear triple B = (X, Y, Z) the set of all B-regulated functions x :

[a, b] → X will be denoted by (B)G([a, b], X) or shortly by (B)G([a, b]) if it is clear
which bilinear triple (X, Y, Z) we have in mind.

A function x : [a, b]→ X is called a (finite) step function on [a, b] if there exists a
finite partition

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b] such that x has a constant value on (αj−1, αj) for every j =
1, . . . , k.

The following results are well known for regulated functions.

2. Proposition. x ∈ G([a, b], X) if and only if x is the uniform limit of step

functions. (See e.g. [2, Theorem 3.1, p. 16].)
If x ∈ G([a, b], X) then:

a) x is bounded, i.e. there exists K > 0 such that ‖x(s)‖X � K for every s ∈ [a, b],
b) for every ε > 0 the sets

{s ∈ [a, b); ‖x(s+)− x(s)‖ � ε}, {s ∈ (a, b]; ‖x(s)− x(s−)‖ � ε}

are finite,

c) the set
S = {s ∈ [a, b];x(s) �= x(s+) or x(s) �= x(s−)}

is at most countable (see e.g. [2, Corollary 3.2, p. 17]),
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d) G([a, b], X) equipped with the norm ‖x‖G([a,b],X) = sup
s∈[a,b]

‖x(s)‖X for x ∈
G([a, b], X) is a Banach space.

3. Proposition. If B = (X, Y, Z) is a bilinear triple and x ∈ G([a, b], X) then
x ∈ (B)G([a, b], X), i.e. G([a, b], X) ⊂ (B)G([a, b], X).

�����. For any y ∈ Y with ‖y‖Y � 1 and s, t ∈ [a, b] we have

‖x(t)y − x(s)y‖Z � ‖x(t)− x(s)‖X‖y‖Y � ‖x(t)− x(s)‖X

and this implies the statement (e.g. by the Bolzano-Cauchy condition for the existence

of onesided limits of the function x). �

In addition to this we also have

4. Proposition. If x ∈ BV ([a, b], X) then x ∈ G([a, b], X), i.e.

(3) BV ([a, b], X) ⊂ G([a, b], X) ⊂ (B)G([a, b], X).

�����. For s, t ∈ [a, b], s � t we have

‖x(t)− x(s)‖X � var[s,t](x) = var[a,t](x)− var[a,s](x)

and this implies (e.g. by the Bolzano-Cauchy condition for the existence of onesided
limits of the nondecreasing bounded real function var[a,t](x)) that the onesided limits

of the function x : [a, b]→ X exist at any point of [a, b], i.e. that A ∈ G([a, b], X). �

������. If the Banach space X is finite dimensional, then it is easy to check

that a function x : [a, b]→ X is B-regulated if and only if it is regulated.

Stieltjes integration of vector valued functions

A finite system of points

{α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

such that

a = α0 < α1 < . . . < αk−1 < αk = b

and
τj ∈ [αj−1, αj ] for j = 1, . . . , k

is called a P -partition of the interval [a, b].
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A function δ : [a, b]→ (0,∞) is called a gauge on [a, b].

For a given gauge δ on [a, b] a P -partition {α0, τ1, α1, τ2, . . . , αk−1, τk, αk} of [a, b]
is called δ-fine if

[αj−1, αj ] ⊂ (τj − δ(τj), τj + δ(τj)) for j = 1, . . . , k.

5. Cousin’s Lemma. Given an arbitrary gauge δ on [a, b] there is a δ-fine

P -partition of [a, b].

(See e.g. [4] and many other books on Henstock-Kurzweil integration.)

6. Definition. Assume that B = (X, Y, Z) is a bilinear triple and that functions
x : [a, b]→ X and y : [a, b]→ Y are given.

We say that the Stieltjes integral
∫ b

a d[x(s)]y(s) exists if there is an element I ∈ Z

such that for every ε > 0 there is a gauge δ on [a, b] such that for

S(dx, y, D) =
k∑

j=1

[
x(αj)− x(αj−1)

]
y(τj)

we have ∥∥S(dx, y, D)− I
∥∥

Z
< ε

provided D is a δ-fine P -partition of [a, b]. We denote I =
∫ b

a
d[x(s)]y(s). For the

case a = b it is convenient to set
∫ b

a d[x(s)]y(s) = 0 and if b < a, then
∫ b

a d[x(s)]y(s) =
− ∫ a

b
d[x(s)]y(s).

Similarly we can define the Stieltjes integral
∫ b

a x(s)d[y(s)] using Stieltjes integral
sums of the form

S(x, dy, D) =
k∑

j=1

x(τj)
[
y(αj)− y(αj−1)

]
.

������. Note that Cousin’s Lemma 5 is essential for this definition. The Stielt-

jes integral introduced in this way is determined uniquely and has all the necessary
elementary properties, see [5].

7. Proposition. Assume that B = (X, Y, Z) is a bilinear triple, that

x ∈ (B)G([a, b], X) ∩ (B)BV ([a, b], X)

and y ∈ G([a, b], Y ).
Then the integral

∫ b

a
d[x(s)]y(s) exists.
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Symmetrically, if x ∈ G([a, b], X) and

y ∈ (B)G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then the integral
∫ b

a x(s)d[y(s)] exists.

See [5, Proposition 15].

Taking into account Proposition 3 we obtain the following

8. Corollary. If B = (X, Y, Z) is a bilinear triple such that

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then both integrals ∫ b

a

d[x(s)]y(s) and
∫ b

a

d[x(s)]y(s)

exist.

Integration by parts

Assume that B = (X, Y, Z) is a bilinear triple and that x : [a, b]→ X , y : [a, b]→
Y . For a P -partition D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk} of the interval [a, b] define

∆(x, y, D) =
k∑

j=1

[(x(αj)−x(τj))(y(αj)−y(τj))− (x(αj−1)−x(τj))(y(αj−1)−y(τj))].

9. Definition. We say that ∆b
a(x, y) exists if there is an element J ∈ Z such

that for every ε > 0 there is a gauge δ on [a, b] such that

‖∆(x, y, D)− J‖Z < ε

if D is a δ-fine P -partition of [a, b]. We then denote J = ∆b
a(x, y).

������. The definition of the quantity ∆b
a(x, y) is an integral-like definition

when compared with the Definition 6.

The basic result is the following.

10. Theorem (Integration by parts). Assume that B = (X, Y, Z) is a bilinear
triple and that x : [a, b]→ X , y : [a, b]→ Y .
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If two of the quantities

∫ b

a

d[x(s)]y(s),
∫ b

a

x(s)d[y(s)], ∆b
a(x, y)

exist then the third exists as well and the equality

(4)
∫ b

a

d[x(s)]y(s) +
∫ b

a

x(s)d[y(s)] = x(b)y(b)− x(a)y(a) −∆b
a(x, y)

holds.

�����. First of all let us show that for every P -partition

D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

of the interval [a, b] we have

(5) S(dx, y, D) + S(x, dy, D) + ∆(x, y, D) = x(b)y(b)− x(a)y(a).

Indeed, by a simple algebraic manipulation we have

k∑
j=1

[x(αj)− x(αj−1)]y(τj) +
k∑

j=1

x(τj)[y(αj)− y(αj−1)]

+
k∑

j=1

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

=
k∑

j=1

[x(αj)y(τj)− x(αj−1)y(τj) + x(τj)y(αj)− x(τj)y(αj−1) + x(αj)y(αj)

− x(τj)y(αj)− x(αj)y(τj) + x(τj)y(τj)− x(αj−1)y(αj−1) + x(τj)y(αj−1)

+ x(αj−1)y(τj)− x(τj)y(τj)]

=
k∑

j=1

[x(αj)y(αj)− x(αj−1)y(αj−1)]

= x(αk)y(αk)− x(α0)y(α0) = x(b)y(b)− x(a)y(a)

because αk = b and α0 = a for the P -partition D.
Suppose e.g. that the integrals

∫ b

a
d[x(s)]y(s),

∫ b

a
x(s)d[y(s)] exist. Then by their

definition for every ε > 0 there is a gauge δ on [a, b] such that for any δ-fine P -
partition D of [a, b] we have

(6)

∥∥∥∥
∫ b

a

d[x(s)]y(s) − S(dx, y, D)

∥∥∥∥
Z

<
ε

2
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and

(7)

∥∥∥∥
∫ b

a

x(s)d[y(s)]− S(x, dy, D)

∥∥∥∥
Z

<
ε

2
.

Then for any δ-fine P -partition D of [a, b] we have by (5), (6) and (7)

∥∥∥∥∆b
a(x, y)− x(b)y(b) + x(a)y(a) +

∫ b

a

d[x(s)]y(s) +
∫ b

a

x(s)d[y(s)]

∥∥∥∥
Z

� ‖∆b
a(x, y) + S(dx, y, D) + S(x, dy, D)− x(b)y(b) + x(a)y(a)‖Z

+

∥∥∥∥
∫ b

a

d[x(s)]y(s) − S(dx, y, D)

∥∥∥∥
Z

+

∥∥∥∥
∫ b

a

x(s)d[y(s)] − S(x, dy, D)

∥∥∥∥
Z

<
ε

2
+

ε

2
= ε

and this inequality shows that by definition ∆b
a(x, y) exists and its value is

∆b
a(x, y) = x(b)y(b)− x(a)y(a) −

∫ b

a

d[x(s)]y(s) −
∫ b

a

x(s)d[y(s)],

i.e. that (4) is satisfied.
The remaining cases when ∆b

a(x, y),
∫ b

a
d[x(s)]y(s) or ∆b

a(x, y),
∫ b

a
x(s)d[y(s)] exist

can be proved similarly. �

������. The proof of Theorem is based on purely algebraic manipulation of
integral sums for the integral. This approach to integration by parts goes back to

the paper [3] of J. Kurzweil.

If x ∈ G([a, b], X) then define

∆+x(τ) = x(τ+) − x(τ) = lim
σ→τ+

x(σ) − x(τ)

and

∆−x(τ) = x(τ) − x(τ−) = x(τ) − lim
σ→τ−x(σ).

Now our aim is to give some corollaries to Theorem 10 which will present the

Stieltjes form of integration by parts formula in a more conventional form.
If B = (X, Y, Z) is a bilinear triple such that x ∈ G([a, b], X) ∩ (B)BV ([a, b], X)

and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then both integrals

∫ b

a

d[x(s)]y(s) and
∫ b

a

d[x(s)]y(s)

exist as was stated in Corollary 8.
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First of all let us prove some auxiliary statements.

11. Lemma. If B = (X, Y, Z) is a bilinear triple,

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y )

or

x ∈ G([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then the series

∑
τ∈[a,b)

∆+x(τ)∆+y(τ),
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)

converge in Z.

�����. Let us consider the first possibility.

Since x ∈ G([a, b], X) the set S of τ ∈ [a, b) for which ∆+x(τ) �= 0 is at most
countable by c) in Proposition 2, i.e.S = {σk ∈ [a, b); k ∈ �} and therefore we can
write ∑

τ∈[a,b)

∆+x(τ)∆+y(τ) =
∞∑

k=1

∆+x(σk)∆+y(σk).

Denote
m∑

k=1

∆+x(σk)∆+y(σk) = Sm ∈ Z

for m ∈ � and assume that ε > 0 is given.

Since the sets

{s ∈ [a, b); ‖∆+x(s)‖ = ‖x(s+)− x(s)‖ � ε},
{s ∈ [a, b); ‖∆+y(s)‖ = ‖y(s+)− y(s)‖ � ε}

are finite by b) from Proposition 2, there exists Mε ∈ � such that for k ∈ �, k > Mε

we have ‖∆+x(σk)‖ < ε and ‖∆+y(σk)‖ < ε

Assume that m > n > Mε, m, n ∈ �. Then

Sm − Sn =
m∑

k=n+1

∆+x(σk)∆+y(σk).

Since the limits x(σk+) ∈ X exist for every k = n + 1, . . . , m, there exist values
ak ∈ [a, b), k = n+ 1, . . . , m such that

[σk, σk + ak] ∩ {σn+1, . . . , σm} = {σk}
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and

‖x(σk + ak)− x(σk+)‖ <
ε

m − n
.

Using this we get

‖Sm − Sn‖Z =

∥∥∥∥
m∑

k=n+1

∆+x(σk)∆+y(σk)

∥∥∥∥
Z

�
∥∥∥∥

m∑
k=n+1

[x(σk+)− x(σk + ak)]∆+y(σk)

∥∥∥∥
Z

+

∥∥∥∥
m∑

k=n+1

[x(σk + ak)− x(σk)]∆+y(σk)

∥∥∥∥
Z

� ε

∥∥∥∥
m∑

k=n+1

[x(σk + ak)− x(σk)]
∆+y(σk)

ε

∥∥∥∥
Z

+
m∑

k=n+1

‖x(σk+)− x(σk + ak)‖X‖∆+y(σk)‖Y

< ε(B)varbax+ ε

m∑
k=n+1

ε

m − n

= ε(B)varbax+ ε2
m − n

m − n
= ε(B)varbax+ ε2.

Hence Sm ∈ Z, m ∈ � is a Cauchy sequence in the Banach space Z and therefore

the series
∞∑

k=1
∆+x(σk)∆+y(σk) =

∑
τ∈[a,b)

∆+x(τ)∆+y(τ) converges in Z.

The convergence of
∑

τ∈(a,b]
∆−x(τ)∆−y(τ) can be shown analogously.

The second possibility when x ∈ G([a, b], X) and y ∈ G([a, b], Y )∩(B)BV ([a, b], Y )
is symmetric and can be treated in the same way as the former. �

12. Lemma. If B = (X, Y, Z) is a bilinear triple, x ∈ G([a, b], X) ∩
(B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then

(8) ∆b
a(x, y) =

∑
τ∈[a,b)

∆+x(τ)∆+y(τ) −
∑

τ∈(a,b]

∆−x(τ)∆−y(τ).

�����. By Corollary 8 both the integrals
∫ b

a x(s)d[y(s)],
∫ b

a d[x(s)]y(s) exist
and therefore by Theorem 10 ∆b

a(x, y) ∈ Z also exists.
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Since x ∈ G([a, b], X) the set S of τ ∈ [a, b) for which ∆+x(τ) �= 0 or ∆−x(τ) �= 0
is at most countable by c) in Proposition 2, i.e.S = {σk ∈ [a, b); k ∈ �} and

∑
τ∈[a,b)

∆+x(τ)∆+y(τ)−
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)(9)

=
∞∑

k=1

∆+x(σk)∆+y(σk)−
∞∑

k=1

∆−x(σk)∆−y(σk).

Assume that ε > 0 is given.

Since the series
∞∑

k=1
∆+x(σk)∆+y(σk),

∞∑
k=1
∆−x(σk)∆−y(σk) converge in Z by

Lemma 11, there exists Lε ∈ � such that

(10)

∥∥∥∥
∞∑

k=Lε+1

∆+x(σk)∆
+y(σk)

∥∥∥∥
Z

< ε,

∥∥∥∥
∞∑

k=Lε+1

∆−x(σk)∆
−y(σk)

∥∥∥∥
Z

< ε.

By Definition 9 there exists a gauge δ0 on [a, b] such that

(11) ‖∆b
a(x, y)−∆(x, y, D)‖Z < ε

for any δ0-fine P -partition D of [a, b].

Further, for every τ ∈ [a, b] there is δ1(τ) > 0 such that

(12)
|x(s) − x(τ+)| < ε, |y(s)− y(τ+)| < ε for s ∈ (τ, τ + δ1(τ)),

|x(s) − x(τ−)| < ε, |y(s)− y(τ−)| < ε for s ∈ (τ − δ1(τ), τ).

This is clear because x, y being regulated, the onesided limits for the functions x,

y exist at every point in [a, b] (at the endpoints only the corresponding ones). The
function δ1 evidently represents a gauge on [a, b].

Finally, let us define
δ2(τ) = dist(τ, {σ1, . . . , σLε})

for τ /∈ {σ1, . . . , σLε} (dist(τ, M) denotes the distance of the point τ from the set

M) and δ2(τ) > 0 for τ ∈ {σ1, . . . , σLε}.
Let us put

δ(τ) = min(δ0(τ), δ1(τ), δ2(τ))

for τ ∈ [a, b]. Then δ is a gauge on [a, b] and every δ-fine P -partition

D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

of the interval [a, b] has the property that {σ1, . . . , σLε} ⊂ {τ1, . . . , τk} (this is the
consequence of the fact that D is δ2-fine) and (11) holds because D is δ0-fine.
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Assume now that D is an arbitrary δ-fine P -partition of [a, b]. Then using (9) we

have
∥∥∥∥∆b

a(x, y)−
∑

τ∈[a,b)

∆+x(τ)∆+y(τ) +
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)

∥∥∥∥
Z

(13)

=

∥∥∥∥∆b
a(x, y)−

∞∑
k=1

∆+x(σk)∆
+y(σk) +

∞∑
k=1

∆−x(σk)∆
−y(σk)

∥∥∥∥
Z

� ‖∆b
a(x, y)−∆(x, y, D)‖Z

+

∥∥∥∥∆(x, y, D)−
∞∑

k=1

∆+x(σk)∆
+y(σk) +

∞∑
k=1

∆−x(σk)∆
−y(σk)

∥∥∥∥
Z

< ε+

∥∥∥∥∆(x, y, D) −
∞∑

k=1

∆+x(σk)∆+y(σk) +
∞∑

k=1

∆−x(σk)∆−y(σk)

∥∥∥∥
Z

,

where (11) was taken into account. Further, by (10) we have

∥∥∥∥∆(x, y, D)−
∞∑

k=1

∆+x(σk)∆
+y(σk) +

∞∑
k=1

∆−x(σk)∆
−y(σk)

∥∥∥∥
Z

(14)

< 2ε+

∥∥∥∥∆(x, y, D)−
Lε∑
l=1

∆+x(σl)∆
+y(σl) +

Lε∑
l=1

∆−x(σl)∆
−y(σl)

∥∥∥∥
Z

.

Now let us consider the last term on the right hand side of (14):

∥∥∥∥∆(x, y, D)−
Lε∑
l=1

∆+x(σl)∆
+y(σl) +

Lε∑
l=1

∆−x(σl)∆
−y(σl)

∥∥∥∥
Z

(15)

=

∥∥∥∥
k∑

j=1

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
Lε∑
l=1

∆+x(σl)∆+y(σl) +
Lε∑
l=1

∆−x(σl)∆−y(σl)

∥∥∥∥
Z

�
∥∥∥∥∥

k∑
j=1

τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))

− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
Lε∑
l=1

∆+x(σl)∆+y(σl) +
Lε∑
l=1

∆−x(σl)∆−y(σl)

∥∥∥∥∥
Z

+

∥∥∥∥∥
k∑

j=1
τj /∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))

− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

∥∥∥∥∥
Z

.
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If τj /∈ {σ1, . . . , σLε} then ‖∆+y(τj)‖Z < ε, ‖∆−y(τj)‖Z < ε and by (12) also

‖y(αj)− y(τj+)‖Y < ε, ‖y(αj−1)− y(τj−)‖Y < ε.

This yields

‖y(αj)− y(τj)‖Y = ‖y(αj)− y(τj+) +∆+y(τj)‖Y < 2ε

and

‖y(αj−1)− y(τj)‖Y < 2ε

in this case, and we have

∥∥∥∥∥
k∑

j=1
τj /∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))(16)

−(x(αj−1)− x(τj))(y(αj−1)− y(τj))]

∥∥∥∥∥
Z

� 2ε(B)varbax.

If τj ∈ {σ1, . . . , σLε} then

(17)∥∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
Lε∑
l=1

∆+x(σl)∆
+y(σl) +

Lε∑
l=1

∆−x(σl)∆
−y(σl)

∥∥∥∥∥
Z

=

∥∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
k∑

j=1
τj∈{σ1,...,σLε}

∆+x(τj)∆+y(τj) +
k∑

j=1
τj∈{σ1,...,σLε}

∆−x(τj)∆−y(τj)

∥∥∥∥∥
Z

�
∥∥∥∥∥

k∑
j=1

τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))−∆+x(τj)∆+y(τj)]

∥∥∥∥∥
Z

+

∥∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

[(x(αj−1)− x(τj))(y(αj−1)− y(τj))−∆−x(τj)∆−y(τj)]

∥∥∥∥∥
Z

.
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We have

(x(αj)− x(τj))(y(αj)− y(τj))−∆+x(τj)∆+y(τj)

=
(
x(αj)− x(τj)

)
(y(αj)− y(τj+)) +

(
x(αj)− x(τj+)

)
∆+y(τj)

and therefore
∥∥∥∥∥

k∑
j=1

τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))−∆+x(τj)∆+y(τj)]

∥∥∥∥∥
Z

�
∥∥∥∥∥

k∑
j=1

τj∈{σ1,...,σLε}

(x(αj)− x(τj)(y(αj)− y(τj+))

∥∥∥∥∥
Z

+

∥∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

(
x(αj)− x(τj+)

)
∆+y(τj)

∥∥∥∥∥
Z

� ε(B)varbax+ ε(B)varbay = ε((B)varbax+ (B)varbay)

and similarly also

∥∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

[(x(αj−1)− x(τj))(y(αj−1)− y(τj))−∆−x(τj)∆
−y(τj)]

∥∥∥∥∥
Z

� ε((B)varbax+ (B)varbay).

Hence by (17) we get

∥∥∥∥
k∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
Lε∑

k=1

∆+x(σk)∆+y(σk) +
Lε∑

k=1

∆−x(σk)∆−y(σk)

∥∥∥∥
Z

� 2ε((B)varbax+ (B)varbay).

This inequality together with (15) and (16) leads to

∥∥∥∥∆(x, y, D)−
Lε∑

k=1

∆+x(σk)∆+y(σk) +
Lε∑

k=1

∆−x(σk)∆−y(σk)

∥∥∥∥
Z

< 2ε((B)varbax+ (B)varbay) + 2ε(B)varbax = ε(4(B)varbax+ 2(B)varbay)

and this with (9) implies (8) because ε > 0 can be taken arbitrarily small. �
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13. Theorem. If B = (X, Y, Z) is a bilinear triple such that x ∈ G([a, b], X) ∩
(B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then

(18)

∫ b

a

x(s)d[y(s)] +
∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a)

−
∑

a�τ<b

∆+x(τ)∆+y(τ) +
∑

a<τ�b

∆−x(τ)∆−y(τ).

�����. By the assumption the integrals
∫ b

a
x(s)d[y(s)],

∫ b

a
d[x(s)]y(s) exist (see

Corollary 8) and by the integration by parts Theorem 10 we have
∫ b

a

x(s)d[y(s)] +
∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a)−∆b
a(x, y).

Using (8) from Lemma 12 we immediately obtain (18). �

14. Corollary. If x ∈ BV ([a, b], X) and y ∈ BV ([a, b], Y ) then the integrals
∫ b

a

x(s)d[y(s)],
∫ b

a

d[x(s)]y(s)

exist and (18) holds.

�����. By (1) and (3) we have x ∈ G([a, b], X) ∩ (B)BV ([a, b], X), y ∈
G([a, b], Y ) ∩ (B)BV ([a, b], Y ) and the result follows from Theorem 13. �
������. This form of integration by parts result was derived e.g. in [6], [7] for

the case of finite dimensional spaces.

15. Theorem. If

x ∈ C([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

or if

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ C([a, b], Y ) ∩ (B)BV ([a, b], Y )

then

(19)
∫ b

a

x(s)d[y(s)] +
∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a).

�����. Since C([a, b], X) ⊂ G([a, b], X) we have ∆+x(τ) = 0, ∆−x(τ) = 0 for

τ ∈ [a, b], and the assumptions of Theorem 13 being satisfied the equality (18) holds.
Moreover, ∑

a�τ<b

∆+x(τ)∆+y(τ) +
∑

a<τ�b

∆−x(τ)∆−y(τ) = 0

and therefore (19) holds in the first case. The second can be proved analogously. �
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