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c = γa(G). For any positive integers a, b, and c, provided a 6 b 6 c and c is not too much
larger than a and b, there is a graph G with γ(G) = a, γa(G) = b, and γâ(G) = c. Given
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1. Introduction

Recall that a dominating set of a graph G is a set of vertices S ⊆ V (G) so that

for every vertex v ∈ V (G), either v ∈ S or v is adjacent to some vertex in S. The

minimum order of a dominating set for G is the domination number of G, denoted

γ(G).

In [1] and [2], Kristiansen, Hedetniemi, and Hedetniemi and Haynes, Hedetniemi,

and Henning introduced defensive alliances, strong defensive alliances, and global

defensive alliances. Their primary motivation was the study of war-time alliances

between nations. A set S of vertices in a graph G is a defensive alliance if for every

v ∈ S, |N [v] ∩ S| > |N(v) ∩ (V − S)|. Hence, each vertex (nation) in S has at least

as many neighboring vertices in its alliance, including itself, as it does neighboring

vertices outside its alliance. A defensive alliance S is strong if the inequality is strict
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for every v ∈ S, that is, |N [v] ∩ S| > |N(v) ∩ (V − S)|. An alliance is global if S is

also a dominating set for the graph G.

A minimum defensive alliance is called an a-set, and the order of a minimum

defensive alliance in G is denoted a(G). Similarly, a minimum strong defensive

alliance is an â-set, with order â(G), and a minimum global defensive alliance is an

γa-set, with order γa(G). The order of a minimum strong global alliance in G is

denoted γâ(G). An a-set or an â-set always induces a connected subgraph, since any

component of a defensive alliance is a defensive alliance.

Several relationships follow naturally from these definitions, including the follow-

ing:
a(G) 6 â(G),

γ(G) 6 γa(G) 6 γâ(G),

a(G) 6 γa(G),

â(G) 6 γâ(G).

In this paper, we consider whether there are other, less obvious, relationships between

these parameters, and whether any pair of positive integers can be achieved as one

of the relationships above by some graph G.

In the first section, we show that a general construction for G is possible for each

of the inequalities
γ(G) 6 γa(G),

a(G) 6 γa(G),

γ(G) 6 γa(G) 6 γâ(G),

although for the last inequality, we will need an additional upper bound on the

value for γâ(G). In the second section, we focus on building graphs around ar-

bitrary given subgraphs so that the subgraphs are induced by a-sets, â-sets, and

γa-sets. In particular, we show that, given any two connected graphs H1 and H2

with order(H1) 6 order(H2), there is a graph G whose unique a-set induces H1 as

a subgraph and whose unique â-set induces H2 as a subgraph. Furthermore, given

any connected graph H , there is a graph G whose unique γa-set induces a subgraph

isomorphic to H .

2. Constructions for inequalities related to alliances

Since every global alliance set is also a dominating set, we know that γ(G) 6

γa(G) for any graph G. Every global alliance set is also a defensive alliance set, so

a(G) 6 γa(G). In fact, any three positive integers satisfying these inequalities are

achievable as the alliance, domination, and global alliance number of some graph G.
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Theorem 2.1. For any positive integers a, b, and c with a 6 c and b 6 c, there

exists a connected graph G such that a(G) = a, γ(G) = b, and γa(G) = c.

P r o o f. Since the path P2 has the desired properties when c = 1, we assume

c > 2.

C a s e I. b = 1.

Construct the graph G by starting with Ka and K2c−a. Let U be the vertices of

Ka, W be a set of a of the vertices of K2c−a, and X be the remaining vertices of

K2c−a. Join every vertex of U to every vertex of W .

It is straightforward to see that the vertices of U form a minimum defensive al-

liance. Since each vertex of W is adjacent to every other vertex, the domination

number is 1. A set consisting of all of the vertices of W and c − a of the vertices of

X form a minimum global alliance, so γa(G) = c.

C a s e II. a = 1 and b > 2.

Let Pb : u1, u2, . . . , ub be a path of order b. Then the graph G is obtained from

Pb by joining new vertices vi to ui for i ∈ {1, . . . , b − 1} and adding 2(c − b) + 2

new vertices z1, . . . , z2(c−b)+2 to G and joining each zi to ub. The graph G is shown

below.

u1 u2 u3 u4
. . .

ub−1 ub
bc bc bc bc bc bc

bc bc bc bc bc bc bc bc

v1 v2 v3 v4 vb−1 z1 z2 z2(c−b)+2

. . .. . .

Observe that {u1, . . . , ub} is the minimum dominating set, so γ(G) = b. Also,

observe that {u1, . . . , ub, z1, . . . , zc−b} is a dominating set and alliance which realizes

the minimum cardinality γa(G) = c. Any one of the end-vertices is a defensive

alliance, so a(G) = 1.

C a s e III. a = b = c = 2.

The graph C4 has the desired property.

C a s e IV. a > 2, b > 2, c > 3, and b < c.

S u b c a s e IV(a). a = c.

Start with the complete graph K2a−1. Add b new vertices v1, v2, . . . , vb. Join each

of the b new vertices to two vertices of K2a−1, so that vi and vj have no common

neighbor for i 6= j, and deg(vi) = 2 for all i. Any defensive alliance must contain

a vertex of K2a−1 and, hence, at least a vertices; any a vertices of K2a−1 will be a

defensive alliance. Any dominating set must contain either vi or a neighbor of vi for
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each i, so γ(G) = b. A set of a vertices from K2a−1, including a neighbor of each vi,

1 6 i 6 b, will be a global dominating set. (Note: b < a.)

S u b c a s e IV(b). a < c.

Construct the graphG as follows. Start with the complete graphsKa andK2c−a−1.

Let U be the vertices of Ka, let W be a − 1 of the vertices of K2c−a−1, and let X

be V (K2c−a−1) − W . Notice that X is not empty and has even order. Join every

vertex of U to every vertex of W . Add b new vertices v1, v2, v3, . . . , vb. Join each vi

to either one vertex of U and one vertex of W or to two vertices of X , so that for

each i, deg vi = 2, and for each i and j, i 6= j, vertices vi and vj have no common

neighbors. In particular, v1 should be joined to two vertices of X and v2 should be

joined to one vertex of U and one vertex of W .

We leave it for the reader to verify that U is a minimum defensive alliance, though

possibly not unique.

Since no two vi and vj with i 6= j have a common neighbor, any dominating set

must contain at least b vertices, including either vi or a neighbor of vi for each i.

Now, v2 is adjacent to some w ∈ W which dominates the rest of the graph, so there

is a dominating set with b vertices.

It is straightforward to check that the set consisting of W , one vertex from U ,

and c − a vertices from X , including at least one neighbor of each vi, is a minimum

global alliance set of order c.

C a s e V. a > 2 and b = c > 3.

Construct G as follows. Start with a complete graph on c vertices v1, v2, . . . , vc,

and
⌊

1
2c

⌋

copies of K2a−2. Join v1 to a − 1 of the vertices in the first K2a−2 and

join v2 to the other a− 1 vertices. Similarly, for each i, 2 6 i 6 2
⌊

1
2c

⌋

, join v2i−1 to

a− 1 of the vertices in the ith copy of K2a−2 and join v2i to the other a− 1 vertices.

Also, add 2
⌊

1
2c

⌋

new vertices u1, u2, . . . , u2⌊ 1

2
c⌋. Join ui to the same a − 1 vertices

in a copy of K2a−1 as vi, and also join ui to vi. If c is odd, add 2
⌊

1
2c

⌋

new vertices

w1, w2, . . . , wc−1. For each i, 1 6 i 6 c − 1, join wi to vc and to ui.

When c is even, the set N [u1]−{v1}, the closed neighborhood of u1 except for v1,

is a minimum alliance set with a vertices. When c is odd, the set N [u1] − {v1, w1}

is a minimum alliance set with a vertices.

The set {v1, v2, . . . , vc} is a minimum dominating set with c vertices, and a mini-

mum global alliance, so we have γ(G) = γa = c = b. �

Based simply on the definitions, the domination number, global alliance number,

and strong global alliance number must satisfy γ(G) 6 γa(G) 6 γâ(G) for any graph

G. Given any three positive integers a 6 b 6 c, is there a graph G so that γ(G) = a,

γa(G) = b, and γâ(G) = c?
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First, suppose b = 1. If G is a graph with γa(G) = 1, then there is a single vertex

u ∈ V (G) so that {u} is a dominating set and a defensive alliance. Since {u} is a

dominating set, every other vertex of G is adjacent to u. Since {u} is a defensive

alliance, there must be at most one vertex adjacent to u. Thus, G = K1 or K2, and

c = 1 or c = 2.

We will consider the remaining cases in the following proof. First, however, we

introduce a useful construction. For any integers i, j, and k with i > 1, 0 6 j 6 i−1,

and j > 2k− 1, we construct a graph H(i, j, k) with order i, minimum degree j, and

containing a clique on k vertices, each of which has degree j in the graph as a whole.

Notice that i > 2k. Start with Kk ∪ Ki−k. Then add k(j − k + 1) edges between

the two complete graphs, distributed as evenly as possible. Thus, each vertex in

Kk will have degree (k − 1) + (j − k + 1) = j and each vertex in Ki−k will have

degree at least i − k − 1 + ⌊k(j − k + 1)/(i − k)⌋. Since i > 2k and i > j, clearly

(i − j − 1)(i − 2k) > 0. With a little arithmetic, this inequality is equivalent to

i − k − 1 + k(j − k + 1)/(i − k) > j. Since the right hand side is an integer, we can

take the floor function of the left hand side and the inequality will still hold.

Theorem 2.2. Let a, b, and c be three positive integers with a 6 b 6 c, 2 6 b,

and c 6 1
2 (ab + 2b − a⌈b/a⌉). Then there exists a graph G such that γ(G) = a,

γa(G) = b, and γâ(G) = c.

P r o o f. We construct G as follows. We start with Kb and partition the vertices

of Kb into a sets S1, S2, . . . Sa as nearly equal in size as possible, so |Si| = ⌊b/a⌋ or

⌊b/a⌋ + 1 for each i.

Let q = ⌊(c − b)/a⌋. Define a additional graphs W1, W2, . . . , Wa as follows. If

q = 0, that is, c − b < a, then Wi is the graph with no edges on b vertices for

1 6 i 6 c − b and Wj is the graph with no edges on b − 1 vertices for c − b <

j 6 a. Otherwise, using the construction described prior to this theorem, define

Wi = H(b, ⌈b/a⌉+2q−1, q+1), a graph of order b with minimum degree ⌈b/a⌉+2q−1

and clique size at least q + 1, for 1 6 i 6 c− b− qa and Wj = H(b, ⌈b/a⌉+ 2q − 3, q)

for c − b − qa < i 6 a.

This is possible provided ⌈b/a⌉+2q−1 6 b−1 or, if a divides c−b, ⌈b/a⌉+2q−3 6

b − 1. By substituting ⌊(c − b)/a⌋ for q and solving for c, we see that the first

inequality is satisfied if c 6 1
2 (ab + 2b − a⌈b/a⌉). Notice that, due to the floor

function in the definition of q, c 6 1
2 (ab+ 2b− a⌈b/a⌉) implies ⌈b/a⌉+ 2q− 1 6 b− 1

but not vice versa.

Now, join every vertex of Wi to every vertex of Si for 1 6 i 6 a.

We will show that the set formed by selecting a single entry from each set Si with

1 6 i 6 a is a minimum dominating set, that the vertices of Kb form a minimum

391



global alliance set, and that the vertices ofKb along with ⌊(c − b)/a⌋+1 vertices from

eachWi, 1 6 i 6 c−b−qa, and ⌊(c − b)/a⌋ vertices from eachWj , c−b−aq < j 6 a,

forms a minimum global strong alliance set.

C l a i m 1. γ(G) = a.

Notice that the a sets W1, W2, . . . , Wa are disjoint, with the property that for any

two vertices w ∈ Wi and w′ ∈ Wj , i 6= j, w and w′ are not adjacent and have no

common neighbor. Thus, any dominating set must contain at least a vertices.

Now, choose one vertex from each set Si, 1 6 i 6 a. This is a dominating set.

C l a i m 2. γa(G) = b.

As noted in Claim 1, any dominating set of G must contain either a vertex of Wi

or a vertex of Si for each i, 1 6 i 6 a. Suppose a vertex u ∈ Si is in a global alliance

set. Since |N [u]| = 2b or 2b− 1, we must have at least b vertices in the set, counting

u. Suppose the vertices w1, w2, . . . , wr from a specific set Wi are in a global alliance

set, but no vertex of Si is in the set. Then each wi has at least |Si| enemies and at

most r friends, including itself, so r > |Si|. Thus, if there are no vertices from any

Si in the set, then there must be at least
a
∑

i=1

|Si| = b vertices from
a
⋃

i=1

Wi in the set.

Either way, γa(G) > b.

Notice that
a
⋃

i=1

Si is a global alliance set of order b.

C l a i m 3. γâ(G) = c.

Again, any dominating set must contain at least one vertex of Wi ∪ Si for each i.

If Wi is an empty graph on b or b − 1 vertices, then any strong alliance set which

contains a vertex of Wi must also contain a vertex of Si. We may assume, then, that

we need at least one vertex ui from each Si in this case. We will also need at least

⌈ 1
2 deg(ui)⌉ = b − 1 or b additional vertices from N [ui] = Wi ∪ Kb. If |Wi| = b − 1

and if
a
⋃

j=1

Sj = Kb is contained in the strong alliance, then no vertex ofWi is needed;

each vertex in Si has b allies and b−1 enemies. However, if |Wi| = b, then any strong

alliance which contains Si must contain at least one vertex of Wi as well.

For Wi = H(b, ⌈b/a⌉ + 2q − 1, q + 1), any strong dominating set which contains

a vertex u ∈ Si must contain ⌈ 1
2 deg(u)⌉ = b neighbors of u, including at least

one vertex w ∈ Wi. And any strong dominating set which contains w ∈ Wi must

contain at least half of the neighbors of w, at least ⌈b/a⌉ + q vertices, including at

least q vertices in Wi, not counting w, or q + 1 total vertices in Wi. Similarly, for

Wi = H(b, ⌈b/a⌉ + 2q − 3, q), any strong dominating set must contain at least q

vertices of Wi.

Thus, at a minimum, we will need all b vertices of
a
⋃

i=1

Si, one vertex from each Wi

which is an empty graph on b vertices, q + 1 vertices from each H(b, ⌊b/a⌋ + 2q − 1,
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q + 1), and q vertices from each H(b, ⌊b/a⌋ + 2q − 3, q). If we add these, we have

at least c vertices. Thus, γâ(G) > c. Such a set will be a strong global alliance set

provided the vertices from each Wi form a clique in that Wi and have the minimum

degree in Wi. By our construction of Wi, such a set can be found. �

It is not known whether the condition c 6 1
2 (ab+2b−a⌈b/a⌉) is necessary. However,

γâ(G) can be bounded above by a formula in terms of γa(G). We mention one such

upper bound.

O b s e r v a t i o n 2.3. For any graph G, γâ(G) 6 γa(G) (1 + γa(G)).

To see this bound, suppose that γa(G) = b, and let S be a subgraph of order b

which is a global alliance set. Then each vertex of S has at most b neighbors outside

of S. Since S is a dominating set, G has at most b(1 + b) vertices. Clearly, V (G) is

a strong global alliance set.

3. Specified alliance and strong alliance sets

In this section, we specify not only the order of the a-set, â-set, and/or γa-set of the

graph but also the subgraphs induced by these sets. If a defensive alliance or strong

defensive alliance induces a subgraph that is not connected, then any component

of that subgraph would be an alliance of smaller order. Thus, any a-set or â-set

induces a connected subgraph. Provided that two graphs H1 and H2 are connected,

though, the next theorem shows that there is a graph G whose unique a-set induces

a subgraph isomorphic to H1 and whose unique â-set induces a subgraph isomorphic

to H2.

Theorem 3.1. Given 1 6 a 6 b and any two connected graphs H1 and H2 with

orders a and b respectively, there exists a connected graph G with the following

properties.

(a) H1 is isomorphic to the subgraph induced by the only defensive alliance of G

that has minimum cardinality a(G).

(b) H2 is isomorphic to the subgraph induced by the only strong defensive alliance

of G that has minimum cardinality â(G).

P r o o f. Suppose that 1 6 a 6 b and that H1 and H2 are connected graphs such

that a = |V (H1)| and b = |V (H2)|. Since both H1 and H2 are connected, deg(v) > 1

for each vertex v in H1 or H2. Modify H1 and H2 to get the graph G as follows: (1)

For every vertex u ∈ V (H1) and i ∈ {1, . . . , degH1
(u) + 1}, adjoin an end-vertex y

(i)
u

to u. (2) For every vertex v ∈ V (H2) and i ∈ {1, . . . , degH2
(v)}, adjoin an end-vertex
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z
(i)
v to v. (3) Add K4b to the new graph and adjoin each vertex labelled y

(i)
u and z

(i)
v

to each vertex in K4b. The resulting graph is G.

v b

H2

u b

H1
b

b

b

...

b

b

b

...

K4bK4b

y
(u)
1

y
(u)
deg(u)+1

Observe that V (H1)(⊆ V (G)) is a defensive alliance (with cardinality a(G)) and

that any defensive alliance which contains a vertex of H1 must contain every vertex

of H1. Further, one sees that any alliance with vertices in V (H2) must contain

a vertex labelled z
(i)
v . Also, observe that no alliance of G can contain any vertex

labelled y
(i)
u or z

(i)
v unless it contains at least 1 + 2b vertices. Lastly, notice that any

alliance of G that is a subset of V (K4b) ⊆ V (G) must also be an alliance of K4b

alone. Any such alliance must have cardinality at least 4b/2 = 2b. With all these

observations, ones sees that V (H1) must be the only defensive alliance of G with

least cardinality. Similarly, V (H2) is the only strong defensive alliance of G that has

minimum cardinality â(G). �

Corollary 3.2. For any 1 6 a 6 b, there exists a connected graph G with

a = a(G) 6 b = â(G).

Next, we see that any connected graph is the subgraph induced by the unique

minimum strong alliance set of some graph. As with a minimum alliance, a minimum

strong alliance will always induce a connected subgraph.

Theorem 3.3. Given a connected graph H , there exists a connected graph G for

which H is the subgraph induced by the unique global (respectively, strong global)

defensive alliance of G with minimum cardinality γa(G) (respectively, γâ(G)).

P r o o f. Adjoin every vertex of Kdeg
H

(v)+1 to each vertex v ∈ H . For proof of

the strong global result, adjoin every vertex of Kdeg
H

(v) to each vertex v ∈ H . �
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The next result is a variation on Theorem 3.1. In the construction in Theorem 3.1,

the two graphs H1 and H2 induced by the a-set and the â-set, respectively, are

disjoint. These two sets could also overlap. We would like to know if we can specify

H1, H2, and the intersection of the two sets. The next result addresses this question

in the case when H1 is a subgraph of H2.

First, a comment about notation. For a graph H2 with subgraph H1, we will use

H2 − H1 as shorthand for the subgraph induced by the vertices V (H2) − V (H1). If

u is a vertex in H1, we will write degH2−H1
u for the number of edges joining u to

vertices in H2 − H1. Notice that this is a slight abuse of notation, since u is not in

H2 − H1.

Theorem 3.4. Suppose H2 is a connected graph with a proper connected sub-

graph H1 so that each of the following conditions hold:

(1) H1 is a defensive alliance (not necessarily minimum) in H2

(2) every vertex of H1 is adjacent to a vertex in H2 − H1

(3) the subgraph of H2 induced by V (H2) − V (H1) is connected

Then there exists a graph G so that the unique minimum strong defensive alliance

of G is isomorphic to H2 and the unique minimum defensive alliance of G is H1.

P r o o f. Assume all of the conditions hold. We will construct G as follows. For

each vertex v that is in H2 and not in H1, attach degH2
v new end-vertices. For

each vertex u in H1, attach degH1
u−degH2−H1

u+1 new end-vertices. (Notice that

degH1
u+1 > degH2−H1

u sinceH1 is a defensive alliance inH2.) Add a new complete

subgraph K2n+1, where n is the order of H2. Join each of the new end-vertices to

each of the vertices in the complete graph.

C l a i m 1. H1 is a defensive alliance in G.

Each vertex u in H1 is defended by itself and degH1
u neighbors. It has degH1

u−

degH2−H1
u + 1 + degH2−H1

u enemies. Thus, it is defended.

C l a i m 2. Any other defensive alliance in G has more than V (H1) vertices.

Suppose a defensive alliance contains a vertex w in G that is not a vertex of H2.

Then the alliance must also contain at least ⌊ 1
2 degG w⌋ of the neighbors of w. Since

every vertex w not in H2 has degree at least 2n, the alliance must have at least

n+1 > |V (H2)| > |V (H1)| vertices. Thus, we may assume without loss of generality

that every defensive alliance is a subgraph of H2.

Suppose a vertex v ∈ H2 − H1 is in a defensive alliance. Since it has at least

degH2
v enemies not in H2, it must have at least degH2

v − 1 allies. Thus, all but

one of its neighbors in H2 must also be in the alliance. If the remaining neighbor is

not in the alliance, then v has degH2
v + 1 enemies; so we can conclude that every

neighbor of v is in the alliance. Now, since H2 − H1 is connected, it follows that
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every vertex in H2 − H1 is in the alliance; and since every vertex of H1 is adjacent

to a vertex of H2 − H1, every vertex of H1 is in the alliance.

Since H1 is a proper subset of H2, this alliance is larger than H1.

Finally, suppose a proper subset of H1 is a defensive alliance in G. Since H1 is

connected, there must be some w ∈ V (H1) which is in the alliance but adjacent to a

vertex u ∈ V (H1) which is not in the alliance. Then w has at least degH2−H1
(w) +

degH1
(w)−degH2−H1

(w)+1+1 enemies, including u, and at most degH1
(w)−1+1

allies, counting itself. This is a contradiction.

C l a i m 3. H2 is a strong defensive alliance in G.

Consider a vertex v in H2 − H1. Since v has degH2
v allies in H2 and degH2

v

enemies outside of H2, v is strongly defended. A vertex u in H1 has degH2
u allies

in H2 and degH1
u − degH2−H1

u + 1 6 degH2
u − 1 + 1 enemies outside of H2, so u

is also strongly defended.

C l a i m 4. Any other strong defensive alliance in G has more than |V (H2)| ver-

tices.

As before, if a vertex w /∈ H2 is in a defensive alliance, so are at least half of its

neighbors. Since every vertex not in H2 has degree at least 2n, this alliance has at

least n + 1 vertices.

We may assume without loss of generality that any smaller strong defensive alliance

is a subgraph of H2. Any strong alliance is also an alliance, so, as argued in Claim 2,

no proper subgraph of H1 can be a strong alliance. If we consider H1, then each

vertex has one more enemy than ally; thus, H1 is not a strong defensive alliance.

Suppose a vertex v ∈ H2−H1 is in a strong defensive alliance. Since v has degH2
v

enemies outside of H2, every neighbor of v must also be in the alliance. Just as in

Claim 2, it follows that every vertex in H2 must be in the alliance. �

Each of the conditions in the theorem is necessary to the premise of Theorem 3.4.

(i) If H1 is not a defensive alliance in H2, then it cannot be a defensive alliance in

G, since we can only add more enemies. If H1 is not connected and H1 is a defensive

alliance of G, then any component of H1 is also a defensive alliance. Similarly, any

component of a strong defensive alliance is also a strong defensive alliance.

(ii) We must have every vertex of H1 adjacent to a vertex of H2 − H1. Consider

the graph H2 defined by V (H2) = {a, b, c, d, e, f, g, h, i, j} and

E(H2) = {ab, ad, ae, ai, bc, bf, cd, ch, ci, dg, ef, eg, fh, fi, gh, gi, gj, ij},

with subgraph H1 induced by {g, i, j}. Notice that H1 is a connected subgraph of

H2 and a defensive alliance of H2, and the graph induced by H2 − H1 is connected.

However, there is no graph G that has H2 as its minimum strong defensive alliance

and H1 as its minimum defensive alliance. Suppose there were such a graph G. Since
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H1 is a defensive alliance in G, there cannot be any additional vertices adjacent to

g or i since they can barely defend themselves against the rest of H2. Because H2 is

a strong defensive alliance, so is the graph induced by H2 − {j}. The only vertices

of H2 defended by j are i and g, but they have no enemies outside of H2.

bc bc

bc bc

bc bc

bc bc

bc bc

e f

a b

d c

g h

j i

(iii) Finally, we must have the subgraph induced by H2 −H1 connected. Consider

the graph H2 defined by V (H2) = {a, b, c, d, e, f, g, h, i, j, k} and

E(H2) = {ab, ac, ae, af, bd, be, cd, cf, df, ef, eg, eh, fg, gj, gk, gi, hi, hj, ik, jk},

with subgraph H1 induced by vertices e, f, g. Then H1 is connected and a defensive

alliance in H2, and every vertex of H1 is adjacent to a vertex of H2 −H1. However,

there is no graph G with minimum strong alliance H2 and minimum alliance H1.

Suppose to the contrary that there is such a G. Since H1 is a defensive alliance in G,

there cannot be any additional vertices adjacent to e, f , or g. However, as before, if

H2 is a strong defensive alliance in G, then so is the graph induced by {a, b, c, d, e, f}.

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

a

b

c

d

e

f g

h

i

k

j
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