BOUNDS CONCERNING THE ALLIANCE NUMBER

Grady Bullington, Linda Eroh, Steven J. Winters, Oshkosh, WI
(Received September 26, 2008)

Abstract. P. Kristiansen, S. M. Hedetniemi, and S. T. Hedetniemi, in Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004), 157-177, and T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, in Global defensive alliances in graphs, Electron. J. Combin. 10 (2003), introduced the defensive alliance number $a(G)$, strong defensive alliance number $\hat{a}(G)$, and global defensive alliance number $\gamma_{a}(G)$. In this paper, we consider relationships between these parameters and the domination number $\gamma(G)$. For any positive integers a, b, and c satisfying $a \leqslant c$ and $b \leqslant c$, there is a graph G with $a=a(G), b=\gamma(G)$, and $c=\gamma_{a}(G)$. For any positive integers a, b, and c, provided $a \leqslant b \leqslant c$ and c is not too much larger than a and b, there is a graph G with $\gamma(G)=a, \gamma_{a}(G)=b$, and $\gamma_{\hat{a}}(G)=c$. Given two connected graphs H_{1} and H_{2}, where $\operatorname{order}\left(H_{1}\right) \leqslant \operatorname{order}\left(H_{2}\right)$, there exists a graph G with a unique minimum defensive alliance isomorphic to H_{1} and a unique minimum strong defensive alliance isomorphic to H_{2}.

Keywords: defensive alliance, global defensive alliance, domination number
MSC 2000: 05C69

1. Introduction

Recall that a dominating set of a graph G is a set of vertices $S \subseteq V(G)$ so that for every vertex $v \in V(G)$, either $v \in S$ or v is adjacent to some vertex in S. The minimum order of a dominating set for G is the domination number of G, denoted $\gamma(G)$.

In [1] and [2], Kristiansen, Hedetniemi, and Hedetniemi and Haynes, Hedetniemi, and Henning introduced defensive alliances, strong defensive alliances, and global defensive alliances. Their primary motivation was the study of war-time alliances between nations. A set S of vertices in a graph G is a defensive alliance if for every $v \in S,|N[v] \cap S| \geqslant|N(v) \cap(V-S)|$. Hence, each vertex (nation) in S has at least as many neighboring vertices in its alliance, including itself, as it does neighboring vertices outside its alliance. A defensive alliance S is strong if the inequality is strict
for every $v \in S$, that is, $|N[v] \cap S|>|N(v) \cap(V-S)|$. An alliance is global if S is also a dominating set for the graph G.

A minimum defensive alliance is called an a-set, and the order of a minimum defensive alliance in G is denoted $a(G)$. Similarly, a minimum strong defensive alliance is an \hat{a}-set, with order $\hat{a}(G)$, and a minimum global defensive alliance is an γ_{a}-set, with order $\gamma_{a}(G)$. The order of a minimum strong global alliance in G is denoted $\gamma_{\hat{a}}(G)$. An a-set or an \hat{a}-set always induces a connected subgraph, since any component of a defensive alliance is a defensive alliance.

Several relationships follow naturally from these definitions, including the following:

$$
\begin{aligned}
& a(G) \leqslant \hat{a}(G), \\
& \gamma(G) \leqslant \gamma_{a}(G) \leqslant \gamma_{\hat{a}}(G), \\
& a(G) \leqslant \gamma_{a}(G) \\
& \hat{a}(G) \leqslant \gamma_{\hat{a}}(G) .
\end{aligned}
$$

In this paper, we consider whether there are other, less obvious, relationships between these parameters, and whether any pair of positive integers can be achieved as one of the relationships above by some graph G.

In the first section, we show that a general construction for G is possible for each of the inequalities

$$
\begin{aligned}
& \gamma(G) \leqslant \gamma_{a}(G) \\
& a(G) \leqslant \gamma_{a}(G) \\
& \gamma(G) \leqslant \gamma_{a}(G) \leqslant \gamma_{\hat{a}}(G)
\end{aligned}
$$

although for the last inequality, we will need an additional upper bound on the value for $\gamma_{\hat{a}}(G)$. In the second section, we focus on building graphs around arbitrary given subgraphs so that the subgraphs are induced by a-sets, \hat{a}-sets, and γ_{a}-sets. In particular, we show that, given any two connected graphs H_{1} and H_{2} with $\operatorname{order}\left(H_{1}\right) \leqslant \operatorname{order}\left(H_{2}\right)$, there is a graph G whose unique a-set induces H_{1} as a subgraph and whose unique \hat{a}-set induces H_{2} as a subgraph. Furthermore, given any connected graph H, there is a graph G whose unique γ_{a}-set induces a subgraph isomorphic to H.

2. Constructions for inequalities related to alliances

Since every global alliance set is also a dominating set, we know that $\gamma(G) \leqslant$ $\gamma_{a}(G)$ for any graph G. Every global alliance set is also a defensive alliance set, so $a(G) \leqslant \gamma_{a}(G)$. In fact, any three positive integers satisfying these inequalities are achievable as the alliance, domination, and global alliance number of some graph G.

Theorem 2.1. For any positive integers a, b, and c with $a \leqslant c$ and $b \leqslant c$, there exists a connected graph G such that $a(G)=a, \gamma(G)=b$, and $\gamma_{a}(G)=c$.

Proof. Since the path P_{2} has the desired properties when $c=1$, we assume $c \geqslant 2$.

Case I. $b=1$.
Construct the graph G by starting with K_{a} and $K_{2 c-a}$. Let U be the vertices of K_{a}, W be a set of a of the vertices of $K_{2 c-a}$, and X be the remaining vertices of $K_{2 c-a}$. Join every vertex of U to every vertex of W.

It is straightforward to see that the vertices of U form a minimum defensive alliance. Since each vertex of W is adjacent to every other vertex, the domination number is 1 . A set consisting of all of the vertices of W and $c-a$ of the vertices of X form a minimum global alliance, so $\gamma_{a}(G)=c$.

Case II. $a=1$ and $b \geqslant 2$.
Let $P_{b}: u_{1}, u_{2}, \ldots, u_{b}$ be a path of order b. Then the graph G is obtained from P_{b} by joining new vertices v_{i} to u_{i} for $i \in\{1, \ldots, b-1\}$ and adding $2(c-b)+2$ new vertices $z_{1}, \ldots, z_{2(c-b)+2}$ to G and joining each z_{i} to u_{b}. The graph G is shown below.

Observe that $\left\{u_{1}, \ldots, u_{b}\right\}$ is the minimum dominating set, so $\gamma(G)=b$. Also, observe that $\left\{u_{1}, \ldots, u_{b}, z_{1}, \ldots, z_{c-b}\right\}$ is a dominating set and alliance which realizes the minimum cardinality $\gamma_{a}(G)=c$. Any one of the end-vertices is a defensive alliance, so $a(G)=1$.

C a se III. $a=b=c=2$.
The graph C_{4} has the desired property.
C ase IV. $a \geqslant 2, b \geqslant 2, c \geqslant 3$, and $b<c$.
Subcase IV(a). $a=c$.
Start with the complete graph $K_{2 a-1}$. Add b new vertices $v_{1}, v_{2}, \ldots, v_{b}$. Join each of the b new vertices to two vertices of $K_{2 a-1}$, so that v_{i} and v_{j} have no common neighbor for $i \neq j$, and $\operatorname{deg}\left(v_{i}\right)=2$ for all i. Any defensive alliance must contain a vertex of $K_{2 a-1}$ and, hence, at least a vertices; any a vertices of $K_{2 a-1}$ will be a defensive alliance. Any dominating set must contain either v_{i} or a neighbor of v_{i} for
each i, so $\gamma(G)=b$. A set of a vertices from $K_{2 a-1}$, including a neighbor of each v_{i}, $1 \leqslant i \leqslant b$, will be a global dominating set. (Note: $b<a$.)

Subcase IV(b). $a<c$.
Construct the graph G as follows. Start with the complete graphs K_{a} and $K_{2 c-a-1}$. Let U be the vertices of K_{a}, let W be $a-1$ of the vertices of $K_{2 c-a-1}$, and let X be $V\left(K_{2 c-a-1}\right)-W$. Notice that X is not empty and has even order. Join every vertex of U to every vertex of W. Add b new vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{b}$. Join each v_{i} to either one vertex of U and one vertex of W or to two vertices of X, so that for each $i, \operatorname{deg} v_{i}=2$, and for each i and $j, i \neq j$, vertices v_{i} and v_{j} have no common neighbors. In particular, v_{1} should be joined to two vertices of X and v_{2} should be joined to one vertex of U and one vertex of W.

We leave it for the reader to verify that U is a minimum defensive alliance, though possibly not unique.

Since no two v_{i} and v_{j} with $i \neq j$ have a common neighbor, any dominating set must contain at least b vertices, including either v_{i} or a neighbor of v_{i} for each i. Now, v_{2} is adjacent to some $w \in W$ which dominates the rest of the graph, so there is a dominating set with b vertices.

It is straightforward to check that the set consisting of W, one vertex from U, and $c-a$ vertices from X, including at least one neighbor of each v_{i}, is a minimum global alliance set of order c.

C ase V. $a \geqslant 2$ and $b=c \geqslant 3$.
Construct G as follows. Start with a complete graph on c vertices $v_{1}, v_{2}, \ldots, v_{c}$, and $\left\lfloor\frac{1}{2} c\right\rfloor$ copies of $K_{2 a-2}$. Join v_{1} to $a-1$ of the vertices in the first $K_{2 a-2}$ and join v_{2} to the other $a-1$ vertices. Similarly, for each $i, 2 \leqslant i \leqslant 2\left\lfloor\frac{1}{2} c\right\rfloor$, join $v_{2 i-1}$ to $a-1$ of the vertices in the i th copy of $K_{2 a-2}$ and join $v_{2 i}$ to the other $a-1$ vertices. Also, add $2\left\lfloor\frac{1}{2} c\right\rfloor$ new vertices $u_{1}, u_{2}, \ldots, u_{2}\left\lfloor\frac{1}{2} c\right\rfloor$. Join u_{i} to the same $a-1$ vertices in a copy of $K_{2 a-1}$ as v_{i}, and also join u_{i} to v_{i}. If c is odd, add $2\left\lfloor\frac{1}{2} c\right\rfloor$ new vertices $w_{1}, w_{2}, \ldots, w_{c-1}$. For each $i, 1 \leqslant i \leqslant c-1$, join w_{i} to v_{c} and to u_{i}.

When c is even, the set $N\left[u_{1}\right]-\left\{v_{1}\right\}$, the closed neighborhood of u_{1} except for v_{1}, is a minimum alliance set with a vertices. When c is odd, the set $N\left[u_{1}\right]-\left\{v_{1}, w_{1}\right\}$ is a minimum alliance set with a vertices.

The set $\left\{v_{1}, v_{2}, \ldots, v_{c}\right\}$ is a minimum dominating set with c vertices, and a minimum global alliance, so we have $\gamma(G)=\gamma_{a}=c=b$.

Based simply on the definitions, the domination number, global alliance number, and strong global alliance number must satisfy $\gamma(G) \leqslant \gamma_{a}(G) \leqslant \gamma_{\hat{a}}(G)$ for any graph G. Given any three positive integers $a \leqslant b \leqslant c$, is there a graph G so that $\gamma(G)=a$, $\gamma_{a}(G)=b$, and $\gamma_{\hat{a}}(G)=c$?

First, suppose $b=1$. If G is a graph with $\gamma_{a}(G)=1$, then there is a single vertex $u \in V(G)$ so that $\{u\}$ is a dominating set and a defensive alliance. Since $\{u\}$ is a dominating set, every other vertex of G is adjacent to u. Since $\{u\}$ is a defensive alliance, there must be at most one vertex adjacent to u. Thus, $G=K_{1}$ or K_{2}, and $c=1$ or $c=2$.

We will consider the remaining cases in the following proof. First, however, we introduce a useful construction. For any integers i, j, and k with $i \geqslant 1,0 \leqslant j \leqslant i-1$, and $j \geqslant 2 k-1$, we construct a graph $H(i, j, k)$ with order i, minimum degree j, and containing a clique on k vertices, each of which has degree j in the graph as a whole. Notice that $i \geqslant 2 k$. Start with $K_{k} \cup K_{i-k}$. Then add $k(j-k+1)$ edges between the two complete graphs, distributed as evenly as possible. Thus, each vertex in K_{k} will have degree $(k-1)+(j-k+1)=j$ and each vertex in K_{i-k} will have degree at least $i-k-1+\lfloor k(j-k+1) /(i-k)\rfloor$. Since $i \geqslant 2 k$ and $i>j$, clearly $(i-j-1)(i-2 k) \geqslant 0$. With a little arithmetic, this inequality is equivalent to $i-k-1+k(j-k+1) /(i-k) \geqslant j$. Since the right hand side is an integer, we can take the floor function of the left hand side and the inequality will still hold.

Theorem 2.2. Let a, b, and c be three positive integers with $a \leqslant b \leqslant c, 2 \leqslant b$, and $c \leqslant \frac{1}{2}(a b+2 b-a\lceil b / a\rceil)$. Then there exists a graph G such that $\gamma(G)=a$, $\gamma_{a}(G)=b$, and $\gamma_{\hat{a}}(G)=c$.

Proof. We construct G as follows. We start with K_{b} and partition the vertices of K_{b} into a sets $S_{1}, S_{2}, \ldots S_{a}$ as nearly equal in size as possible, so $\left|S_{i}\right|=\lfloor b / a\rfloor$ or $\lfloor b / a\rfloor+1$ for each i.

Let $q=\lfloor(c-b) / a\rfloor$. Define a additional graphs $W_{1}, W_{2}, \ldots, W_{a}$ as follows. If $q=0$, that is, $c-b<a$, then W_{i} is the graph with no edges on b vertices for $1 \leqslant i \leqslant c-b$ and W_{j} is the graph with no edges on $b-1$ vertices for $c-b<$ $j \leqslant a$. Otherwise, using the construction described prior to this theorem, define $W_{i}=H(b,\lceil b / a\rceil+2 q-1, q+1)$, a graph of order b with minimum degree $\lceil b / a\rceil+2 q-1$ and clique size at least $q+1$, for $1 \leqslant i \leqslant c-b-q a$ and $W_{j}=H(b,\lceil b / a\rceil+2 q-3, q)$ for $c-b-q a<i \leqslant a$.

This is possible provided $\lceil b / a\rceil+2 q-1 \leqslant b-1$ or, if a divides $c-b,\lceil b / a\rceil+2 q-3 \leqslant$ $b-1$. By substituting $\lfloor(c-b) / a\rfloor$ for q and solving for c, we see that the first inequality is satisfied if $c \leqslant \frac{1}{2}(a b+2 b-a\lceil b / a\rceil)$. Notice that, due to the floor function in the definition of $q, c \leqslant \frac{1}{2}(a b+2 b-a\lceil b / a\rceil)$ implies $\lceil b / a\rceil+2 q-1 \leqslant b-1$ but not vice versa.

Now, join every vertex of W_{i} to every vertex of S_{i} for $1 \leqslant i \leqslant a$.
We will show that the set formed by selecting a single entry from each set S_{i} with $1 \leqslant i \leqslant a$ is a minimum dominating set, that the vertices of K_{b} form a minimum
global alliance set, and that the vertices of K_{b} along with $\lfloor(c-b) / a\rfloor+1$ vertices from each $W_{i}, 1 \leqslant i \leqslant c-b-q a$, and $\lfloor(c-b) / a\rfloor$ vertices from each $W_{j}, c-b-a q<j \leqslant a$, forms a minimum global strong alliance set.

Claim 1. $\gamma(G)=a$.
Notice that the a sets $W_{1}, W_{2}, \ldots, W_{a}$ are disjoint, with the property that for any two vertices $w \in W_{i}$ and $w^{\prime} \in W_{j}, i \neq j, w$ and w^{\prime} are not adjacent and have no common neighbor. Thus, any dominating set must contain at least a vertices.

Now, choose one vertex from each set $S_{i}, 1 \leqslant i \leqslant a$. This is a dominating set.
Claim 2. $\gamma_{a}(G)=b$.
As noted in Claim 1, any dominating set of G must contain either a vertex of W_{i} or a vertex of S_{i} for each $i, 1 \leqslant i \leqslant a$. Suppose a vertex $u \in S_{i}$ is in a global alliance set. Since $|N[u]|=2 b$ or $2 b-1$, we must have at least b vertices in the set, counting u. Suppose the vertices $w_{1}, w_{2}, \ldots, w_{r}$ from a specific set W_{i} are in a global alliance set, but no vertex of S_{i} is in the set. Then each w_{i} has at least $\left|S_{i}\right|$ enemies and at most r friends, including itself, so $r \geqslant\left|S_{i}\right|$. Thus, if there are no vertices from any S_{i} in the set, then there must be at least $\sum_{i=1}^{a}\left|S_{i}\right|=b$ vertices from $\bigcup_{i=1}^{a} W_{i}$ in the set. Either way, $\gamma_{a}(G) \geqslant b$.

Notice that $\bigcup_{i=1}^{a} S_{i}$ is a global alliance set of order b.
Claim 3. $\gamma_{\hat{a}}(G)=c$.
Again, any dominating set must contain at least one vertex of $W_{i} \cup S_{i}$ for each i. If W_{i} is an empty graph on b or $b-1$ vertices, then any strong alliance set which contains a vertex of W_{i} must also contain a vertex of S_{i}. We may assume, then, that we need at least one vertex u_{i} from each S_{i} in this case. We will also need at least $\left\lceil\frac{1}{2} \operatorname{deg}\left(u_{i}\right)\right\rceil=b-1$ or b additional vertices from $N\left[u_{i}\right]=W_{i} \cup K_{b}$. If $\left|W_{i}\right|=b-1$ and if $\bigcup_{j=1}^{a} S_{j}=K_{b}$ is contained in the strong alliance, then no vertex of W_{i} is needed; each vertex in S_{i} has b allies and $b-1$ enemies. However, if $\left|W_{i}\right|=b$, then any strong alliance which contains S_{i} must contain at least one vertex of W_{i} as well.

For $W_{i}=H(b,\lceil b / a\rceil+2 q-1, q+1)$, any strong dominating set which contains a vertex $u \in S_{i}$ must contain $\left\lceil\frac{1}{2} \operatorname{deg}(u)\right\rceil=b$ neighbors of u, including at least one vertex $w \in W_{i}$. And any strong dominating set which contains $w \in W_{i}$ must contain at least half of the neighbors of w, at least $\lceil b / a\rceil+q$ vertices, including at least q vertices in W_{i}, not counting w, or $q+1$ total vertices in W_{i}. Similarly, for $W_{i}=H(b,\lceil b / a\rceil+2 q-3, q)$, any strong dominating set must contain at least q vertices of W_{i}.

Thus, at a minimum, we will need all b vertices of $\bigcup_{i=1}^{a} S_{i}$, one vertex from each W_{i} which is an empty graph on b vertices, $q+1$ vertices from each $H(b,\lfloor b / a\rfloor+2 q-1$,
$q+1$), and q vertices from each $H(b,\lfloor b / a\rfloor+2 q-3, q)$. If we add these, we have at least c vertices. Thus, $\gamma_{\hat{a}}(G) \geqslant c$. Such a set will be a strong global alliance set provided the vertices from each W_{i} form a clique in that W_{i} and have the minimum degree in W_{i}. By our construction of W_{i}, such a set can be found.

It is not known whether the condition $c \leqslant \frac{1}{2}(a b+2 b-a\lceil b / a\rceil)$ is necessary. However, $\gamma_{\hat{a}}(G)$ can be bounded above by a formula in terms of $\gamma_{a}(G)$. We mention one such upper bound.

Observation 2.3. For any graph $G, \gamma_{\hat{a}}(G) \leqslant \gamma_{a}(G)\left(1+\gamma_{a}(G)\right)$.
To see this bound, suppose that $\gamma_{a}(G)=b$, and let S be a subgraph of order b which is a global alliance set. Then each vertex of S has at most b neighbors outside of S. Since S is a dominating set, G has at most $b(1+b)$ vertices. Clearly, $V(G)$ is a strong global alliance set.

3. Specified alliance and strong alliance sets

In this section, we specify not only the order of the a-set, \hat{a}-set, and/or γ_{a}-set of the graph but also the subgraphs induced by these sets. If a defensive alliance or strong defensive alliance induces a subgraph that is not connected, then any component of that subgraph would be an alliance of smaller order. Thus, any a-set or \hat{a}-set induces a connected subgraph. Provided that two graphs H_{1} and H_{2} are connected, though, the next theorem shows that there is a graph G whose unique a-set induces a subgraph isomorphic to H_{1} and whose unique \hat{a}-set induces a subgraph isomorphic to H_{2}.

Theorem 3.1. Given $1 \leqslant a \leqslant b$ and any two connected graphs H_{1} and H_{2} with orders a and b respectively, there exists a connected graph G with the following properties.
(a) H_{1} is isomorphic to the subgraph induced by the only defensive alliance of G that has minimum cardinality $a(G)$.
(b) H_{2} is isomorphic to the subgraph induced by the only strong defensive alliance of G that has minimum cardinality $\hat{a}(G)$.

Proof. Suppose that $1 \leqslant a \leqslant b$ and that H_{1} and H_{2} are connected graphs such that $a=\left|V\left(H_{1}\right)\right|$ and $b=\left|V\left(H_{2}\right)\right|$. Since both H_{1} and H_{2} are connected, $\operatorname{deg}(v) \geqslant 1$ for each vertex v in H_{1} or H_{2}. Modify H_{1} and H_{2} to get the graph G as follows: (1) For every vertex $u \in V\left(H_{1}\right)$ and $i \in\left\{1, \ldots, \operatorname{deg}_{H_{1}}(u)+1\right\}$, adjoin an end-vertex $y_{u}^{(i)}$ to u. (2) For every vertex $v \in V\left(H_{2}\right)$ and $i \in\left\{1, \ldots, \operatorname{deg}_{H_{2}}(v)\right\}$, adjoin an end-vertex
$z_{v}^{(i)}$ to v. (3) Add $K_{4 b}$ to the new graph and adjoin each vertex labelled $y_{u}^{(i)}$ and $z_{v}^{(i)}$ to each vertex in $K_{4 b}$. The resulting graph is G.

Observe that $V\left(H_{1}\right)(\subseteq V(G))$ is a defensive alliance (with cardinality $a(G)$) and that any defensive alliance which contains a vertex of H_{1} must contain every vertex of H_{1}. Further, one sees that any alliance with vertices in $V\left(H_{2}\right)$ must contain a vertex labelled $z_{v}^{(i)}$. Also, observe that no alliance of G can contain any vertex labelled $y_{u}^{(i)}$ or $z_{v}^{(i)}$ unless it contains at least $1+2 b$ vertices. Lastly, notice that any alliance of G that is a subset of $V\left(K_{4 b}\right) \subseteq V(G)$ must also be an alliance of $K_{4 b}$ alone. Any such alliance must have cardinality at least $4 b / 2=2 b$. With all these observations, ones sees that $V\left(H_{1}\right)$ must be the only defensive alliance of G with least cardinality. Similarly, $V\left(H_{2}\right)$ is the only strong defensive alliance of G that has minimum cardinality $\hat{a}(G)$.

Corollary 3.2. For any $1 \leqslant a \leqslant b$, there exists a connected graph G with $a=a(G) \leqslant b=\hat{a}(G)$.

Next, we see that any connected graph is the subgraph induced by the unique minimum strong alliance set of some graph. As with a minimum alliance, a minimum strong alliance will always induce a connected subgraph.

Theorem 3.3. Given a connected graph H, there exists a connected graph G for which H is the subgraph induced by the unique global (respectively, strong global) defensive alliance of G with minimum cardinality $\gamma_{a}(G)$ (respectively, $\gamma_{\hat{a}}(G)$).

Proof. Adjoin every vertex of $K_{\operatorname{deg}_{H}(v)+1}$ to each vertex $v \in H$. For proof of the strong global result, adjoin every vertex of $K_{\operatorname{deg}_{H}(v)}$ to each vertex $v \in H$.

The next result is a variation on Theorem 3.1. In the construction in Theorem 3.1, the two graphs H_{1} and H_{2} induced by the a-set and the \hat{a}-set, respectively, are disjoint. These two sets could also overlap. We would like to know if we can specify H_{1}, H_{2}, and the intersection of the two sets. The next result addresses this question in the case when H_{1} is a subgraph of H_{2}.

First, a comment about notation. For a graph H_{2} with subgraph H_{1}, we will use $H_{2}-H_{1}$ as shorthand for the subgraph induced by the vertices $V\left(H_{2}\right)-V\left(H_{1}\right)$. If u is a vertex in H_{1}, we will write $\operatorname{deg}_{H_{2}-H_{1}} u$ for the number of edges joining u to vertices in $H_{2}-H_{1}$. Notice that this is a slight abuse of notation, since u is not in $H_{2}-H_{1}$.

Theorem 3.4. Suppose H_{2} is a connected graph with a proper connected subgraph H_{1} so that each of the following conditions hold:
(1) H_{1} is a defensive alliance (not necessarily minimum) in H_{2}
(2) every vertex of H_{1} is adjacent to a vertex in $H_{2}-H_{1}$
(3) the subgraph of H_{2} induced by $V\left(H_{2}\right)-V\left(H_{1}\right)$ is connected

Then there exists a graph G so that the unique minimum strong defensive alliance of G is isomorphic to H_{2} and the unique minimum defensive alliance of G is H_{1}.

Proof. Assume all of the conditions hold. We will construct G as follows. For each vertex v that is in H_{2} and not in H_{1}, attach $\operatorname{deg}_{H_{2}} v$ new end-vertices. For each vertex u in H_{1}, attach $\operatorname{deg}_{H_{1}} u-\operatorname{deg}_{H_{2}-H_{1}} u+1$ new end-vertices. (Notice that $\operatorname{deg}_{H_{1}} u+1 \geqslant \operatorname{deg}_{H_{2}-H_{1}} u$ since H_{1} is a defensive alliance in H_{2}.) Add a new complete subgraph $K_{2 n+1}$, where n is the order of H_{2}. Join each of the new end-vertices to each of the vertices in the complete graph.

Claim 1. H_{1} is a defensive alliance in G.
Each vertex u in H_{1} is defended by itself and $\operatorname{deg}_{H_{1}} u$ neighbors. It has $\operatorname{deg}_{H_{1}} u-$ $\operatorname{deg}_{H_{2}-H_{1}} u+1+\operatorname{deg}_{H_{2}-H_{1}} u$ enemies. Thus, it is defended.

Claim 2. Any other defensive alliance in G has more than $V\left(H_{1}\right)$ vertices.
Suppose a defensive alliance contains a vertex w in G that is not a vertex of H_{2}. Then the alliance must also contain at least $\left\lfloor\frac{1}{2} \operatorname{deg}_{G} w\right\rfloor$ of the neighbors of w. Since every vertex w not in H_{2} has degree at least $2 n$, the alliance must have at least $n+1>\left|V\left(H_{2}\right)\right|>\left|V\left(H_{1}\right)\right|$ vertices. Thus, we may assume without loss of generality that every defensive alliance is a subgraph of H_{2}.

Suppose a vertex $v \in H_{2}-H_{1}$ is in a defensive alliance. Since it has at least $\operatorname{deg}_{H_{2}} v$ enemies not in H_{2}, it must have at least $\operatorname{deg}_{H_{2}} v-1$ allies. Thus, all but one of its neighbors in H_{2} must also be in the alliance. If the remaining neighbor is not in the alliance, then v has $\operatorname{deg}_{H_{2}} v+1$ enemies; so we can conclude that every neighbor of v is in the alliance. Now, since $H_{2}-H_{1}$ is connected, it follows that
every vertex in $H_{2}-H_{1}$ is in the alliance; and since every vertex of H_{1} is adjacent to a vertex of $H_{2}-H_{1}$, every vertex of H_{1} is in the alliance.

Since H_{1} is a proper subset of H_{2}, this alliance is larger than H_{1}.
Finally, suppose a proper subset of H_{1} is a defensive alliance in G. Since H_{1} is connected, there must be some $w \in V\left(H_{1}\right)$ which is in the alliance but adjacent to a vertex $u \in V\left(H_{1}\right)$ which is not in the alliance. Then w has at least $\operatorname{deg}_{H_{2}-H_{1}}(w)+$ $\operatorname{deg}_{H_{1}}(w)-\operatorname{deg}_{H_{2}-H_{1}}(w)+1+1$ enemies, including u, and at $\operatorname{most}^{\operatorname{deg}_{H_{1}}}(w)-1+1$ allies, counting itself. This is a contradiction.

Claim 3. H_{2} is a strong defensive alliance in G.
Consider a vertex v in $H_{2}-H_{1}$. Since v has $\operatorname{deg}_{H_{2}} v$ allies in H_{2} and $\operatorname{deg}_{H_{2}} v$ enemies outside of H_{2}, v is strongly defended. A vertex u in H_{1} has $\operatorname{deg}_{H_{2}} u$ allies in H_{2} and $\operatorname{deg}_{H_{1}} u-\operatorname{deg}_{H_{2}-H_{1}} u+1 \leqslant \operatorname{deg}_{H_{2}} u-1+1$ enemies outside of H_{2}, so u is also strongly defended.

Claim 4. Any other strong defensive alliance in G has more than $\left|V\left(H_{2}\right)\right|$ vertices.

As before, if a vertex $w \notin H_{2}$ is in a defensive alliance, so are at least half of its neighbors. Since every vertex not in H_{2} has degree at least $2 n$, this alliance has at least $n+1$ vertices.

We may assume without loss of generality that any smaller strong defensive alliance is a subgraph of H_{2}. Any strong alliance is also an alliance, so, as argued in Claim 2, no proper subgraph of H_{1} can be a strong alliance. If we consider H_{1}, then each vertex has one more enemy than ally; thus, H_{1} is not a strong defensive alliance.

Suppose a vertex $v \in H_{2}-H_{1}$ is in a strong defensive alliance. Since v has $\operatorname{deg}_{H_{2}} v$ enemies outside of H_{2}, every neighbor of v must also be in the alliance. Just as in Claim 2, it follows that every vertex in H_{2} must be in the alliance.

Each of the conditions in the theorem is necessary to the premise of Theorem 3.4.
(i) If H_{1} is not a defensive alliance in H_{2}, then it cannot be a defensive alliance in G, since we can only add more enemies. If H_{1} is not connected and H_{1} is a defensive alliance of G, then any component of H_{1} is also a defensive alliance. Similarly, any component of a strong defensive alliance is also a strong defensive alliance.
(ii) We must have every vertex of H_{1} adjacent to a vertex of $H_{2}-H_{1}$. Consider the graph H_{2} defined by $V\left(H_{2}\right)=\{a, b, c, d, e, f, g, h, i, j\}$ and

$$
E\left(H_{2}\right)=\{a b, a d, a e, a i, b c, b f, c d, c h, c i, d g, e f, e g, f h, f i, g h, g i, g j, i j\}
$$

with subgraph H_{1} induced by $\{g, i, j\}$. Notice that H_{1} is a connected subgraph of H_{2} and a defensive alliance of H_{2}, and the graph induced by $H_{2}-H_{1}$ is connected. However, there is no graph G that has H_{2} as its minimum strong defensive alliance and H_{1} as its minimum defensive alliance. Suppose there were such a graph G. Since
H_{1} is a defensive alliance in G, there cannot be any additional vertices adjacent to g or i since they can barely defend themselves against the rest of H_{2}. Because H_{2} is a strong defensive alliance, so is the graph induced by $H_{2}-\{j\}$. The only vertices of H_{2} defended by j are i and g, but they have no enemies outside of H_{2}.

(iii) Finally, we must have the subgraph induced by $H_{2}-H_{1}$ connected. Consider the graph H_{2} defined by $V\left(H_{2}\right)=\{a, b, c, d, e, f, g, h, i, j, k\}$ and

$$
E\left(H_{2}\right)=\{a b, a c, a e, a f, b d, b e, c d, c f, d f, e f, e g, e h, f g, g j, g k, g i, h i, h j, i k, j k\},
$$

with subgraph H_{1} induced by vertices e, f, g. Then H_{1} is connected and a defensive alliance in H_{2}, and every vertex of H_{1} is adjacent to a vertex of $H_{2}-H_{1}$. However, there is no graph G with minimum strong alliance H_{2} and minimum alliance H_{1}. Suppose to the contrary that there is such a G. Since H_{1} is a defensive alliance in G, there cannot be any additional vertices adjacent to e, f, or g. However, as before, if H_{2} is a strong defensive alliance in G, then so is the graph induced by $\{a, b, c, d, e, f\}$.

References

[1] P. Kristiansen, S. M. Hedetniemi, S. T. Hedetniemi: Alliances in graphs. J. Comb. Math. Comb. Comput. 48 (2004), 157-177.
[2] T. W.Haynes, S.T.Hedetniemi, M. A.Henning: Global defensive alliances in graphs. Electron. J. Comb. 10 (2003), \# R47.

Authors' address: Grady Bullington, Linda Eroh, Steven J. Winters, Mathematics Department, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA, e-mail: bullingt@uwosh.edu, eroh@uwosh.edu, winters@uwosh.edu.

