

Tore Supra "Fast Particles" Experiments

M.Goniche, J.Gunn, P.Devynck, A.Ekedahl, J. Mailloux¹, V. Petržílka*, F.Žácek*, V.Fuchs*

CEA-Cadarache, France

¹ JET, Culham, UK

*Association EURATOM-IPP.CR

LH SOL Generated Fast Particles Meeting

Association Euratom IPP.CR, Prague

December 16-17, 2004

Presenting author: V. Petrzilka

OUTLINE

Measurements of fluctuating fields

Nonlinear density variations in front of LH launchers

RFA measurements

Fast Particle Generation

Generation of fast electrons in front of lower hybrid frequency (LHF) antennas is known to be caused by Landau damping of high $N_{//}$ components of the launched spectrum. These high $N_{//}$ components ($|N_{//}| > 20$) are expected to be absorbed within a very narrow layer (1-2mm) whereas infrared imaging of plasma facing components indicates a much broader (>5mm) heat flux deposition. Moreover this heat flux is found to depend on LHF electric field much more strongly than simulations predict.

A possible explanation of these discrepancies is the theoretically predicted enhancement of fast electron generation by spontaneously arising random fields (fluctuations, LHF wave scattering). In this case a decrease of fluctuation level by absorbtion on fast electrons is expected along flux tubes connected to the antenna. In order to assess this hypothesis, a probe was installed close to the LHF antenna and the fluctuations of the saturation current and floating potential were investigated in the 0.2-500 kHz frequency range.

Physical Mechanism	First observation of damage on	Heat flux location	Density scaling		Protection
	Tore Supra	:+e1	\$		
Trapped	1990	Bottom of	$\sim 1/n_e^2$	•	n _e >1.5 10 ¹⁹
particles	ofLHE	the		•	Reinforced
(Ripple)	erosion of	machine	(1990)		areas
Stro	ngor	(x18)trall			
Fast	(P) - 1999 of E	Inner	~ 1/n _e	•	High heat
electron	og erosion	First Wall			flux PFCs
Diffusion S	trons				(CIEL)
Acceleration	1994	Grill	$\sim n_e (edge)$	•	Optimization
Near the		protection,			of density at
Grills		Bottom			the grill
		limiter,		•	High heat
		ED			flux grill
		neutraliser			protection
				•	High heat
					flux PFCs
					(CIEL)

Heat flux measurements on the grill guard limiter (1)

- P_{LH} kept constant (1MW)
- Number of activated WG varied

M.Goniche, V. Petrzilka et al., 15th RF Top.Conf, 2003

Fluctuations measurements (1)

CZECH REPUR

RF probes **RF probe on launcher C3** 1 mm **RF probe** LH Module

Fluctuations measurements (2) Tore Supra

 10^{2} 15-25 kHz DB of 19 shots - 3 triggers /shot Power at 15-25 kHz (A.U.) 10^{-1} (31722-853)q_<3.4 Connected ($q_a < 3.4$): Level of fluctuations 10^{-1} *3.4<q_<3.8 Non-connected ($q_a > 3.8$): $q_a > 3.8$ 10⁻² Level of fluctuations **7** $(q_a = 3.2)$ 10^{-3} 0.5 2.5 0 1 1.5 with LH power P_{LH} - C3 (MW)

Damping of fluctuations by RF field ?

(M. Goniche, V. Petrzilka, et al., presented at the EPS 2004 London conference).

3

Fluctuations of saturation current ($\sim \Delta n_e/n_e$) -

Fluctuations of saturation current ($\sim \Delta n_e/n_e$) – not

Langmuir probe data on C3 Tore Supra launcher: density at grill vs coupled power on C3 Density on probe 1 is independent of power (not connected to grill) Density on probe 2 decreases with power (connected to grill)

Computed dependence of the plasma density at the wave-guide row center (n_{max}) and at its toroidal boundary (n_{min}) on W_{pond} . The value $W_{pond} = 400 \text{ eV}$ (case 4) corresponds to the LH field electric field intensity *E* at the grill mouth of about E = 3 kV/cm.

Measured dependence of the plasma density at the waveguide row toroidal boundary

Plasma fluxes and density inhomogeneities Modeling

V. Petrzilka, A. Ekedahl et al., 30th EPS 2003 Conference

Magnetic field connections between RFA and LH launchers

RFA measurements on a magnetic line passing in front of the TS LH grill

- Fast elec. (E>100V) are collected when the RFA is (θ, ϕ) connected to the grill
- •Width of the beam is >5mm
- Beam is drifted radially by 3 ± -1 cm **INWARDS** along the field lines (L_c= 14m)

(M. Goniche, V. Petrzilka, J. Gunn et al., presented at the EPS 2004 London conference).

Fig. 1. Timing of the RFA triggers (left) and voltage on the RFA entrance slit (red), 1st grid (blue) and 2nd grid (green) *for the shot #31289.*

Fig. 2. Variations of the collector (blue) and the entrance slit (red) signal, when the RFA head goes through the fast electro beam, shot #31289.

Fig. 3. Details of the signal shown in Fig. 2.

Normalized RFA signal as a function of normalized RMS of fluctuations

Normalized RFA signal as a function of total launched LH power

Normalized RMS of fluctuations signal as a function of the total launched LH power

Association Euratom-Cea

Conclusions (1)

- ITER antenna design is expected to be favorable as far as there is no enhancement by additional physics
 - \rightarrow to be checked on Tore Supra C4 PAM launcher (2005)
- •Effect of additional physics (random fields) is suggested by the following experimental results:
- ambiguous effect (TdeV) or no effect (Tore Supra) of septa roundings on dissipated power
- Strong electric field dependence $(\mathrm{E}_{\mathrm{RF}}{}^{4})$ not explained by calculations
 - Strong local reduction of density fluctuations at high power
 - \rightarrow More studies on CASTOR and TS (V_f fluctuation meas.)

Conclusions (2)

- Parasitic LH power absorption may have 2 deleterious effects:
 - Heat flux => documented
 - **Sputtering** if ions are accelerated => **unknown** !

 \rightarrow RFA measurement of fast ions is difficult in case of el. and ions

→ To be attempted on Tore Supra (and JET ?)

→ Preliminary CASTOR results (emissive probe) show POSITIVE plasma potential in front of the grill!

• Knowledge of the parallel heat flux and grazing angle of the field lines is basic

- → Grazing angle is small on JET , $F_{//}$ is unknown (IR meas. needed!)
- → Field line tracing is required for ITER
- \rightarrow Inwards drift has to be understood