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Abstract. A topological space X is called base-base paracompact (John E. Porter) if it
has an open base B such that every base B′ ⊆ B has a locally finite subcover C ⊆ B′. It is
not known if every paracompact space is base-base paracompact. We study subspaces of
the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
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1. Introduction

The irrationals as a topological subspace of the reals have a coarse base [4], i.e. an

open base that has no locally finite subcover. Also, the base of all bounded, open,

convex sets in a reflexive, infinite-dimensional Banach space is coarse [4], [5]. A space

is totally paracompact [8] if every open base has a locally finite subcover. Equiv-

alently, if no base is coarse. In totally paracompact metric spaces small and large

inductive dimensions coincide [8]. The irrationals with the usual metric topology

are not totally paracompact [1], [4], [11], [12]. Non-metrizable, paracompact spaces

that are not totally paracompact are the Sorgenfrey line and the Michael line [2],

[14], [26]. A similar property that holds for all metrizabe spaces was defined by John

E.Porter:

Definition 1.1 [21]. A space X is base-base paracompact if it has an open base

B such that every base B′ contained in B has a locally finite subcover C. Equivalently,

if there exists an open base B for X such that B contains no coarse base.
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Base-base paracompact spaces are paracompact since every subcover is a refine-

ment. Although base properties are stronger than covering properties, no example is

known of a paracompact space that is not base-base paracompact [21], also [19], [20].

John E.Porter proved that base-base paracompact spaces are D-spaces [21] (i.e., for

every open neighborhood assignment {Ux : x ∈ X} there is a closed discrete D ⊆ X

such that
⋃

{Ux : x ∈ D} = X). Thus, it would be enough to find a paracompact

space that is not a D-space, but this is an old problem of Eric van Douwen [7], [10].

Base-base paracompact spaces include base-cover paracompact and base-family

paracompact spaces studied by the author in [16], [17], [18]. The latter two classes

are distinct from each other and from paracompact spaces. Only the Fσ subspaces

of the Sorgenfrey line are base-cover paracompact. Only countable subspaces of the

Sorgenfrey line are base-family paracompact. Consistently, there are subspaces of

the Sorgenfrey line which are not base-cover paracompact (i.e. not Fσ), yet that are

base-base paracompact. Such is any Lusin set or, under MA, any uncountable set of

cardinality less than continuum. These sets are Hurewicz [9], [13], and hence totally

paracompact [6], see also [2], [12], [14], [15], [25]. G.Gruenhage gave a direct proof

for Lusin subspaces that the base of all half-open intervals contains no coarse base.

A. Lelek [11] gave a necessary condition for a subset of a complete metric space

to be totally paracompact. He constructed a coarse base B′ such that if C ⊆ B′

is a point-finite family, then the complement of
⋃

C contains a Cantor set (that is,

a homeomorphic copy of the Cantor middle-third set). In the context of base-base

paracompactness, a similar construction would naturally be subject to the require-

ment that the elements of B′ come from a base B that is given in advance. For some

subspaces of the Sorgenfrey line, we show that such a construction works for common

bases B defined below. It remains open if all bases for such subspaces are common.

2. Common bases for the Sorgenfrey line

Recall that the Sorgenfrey line S is the set of all reals having all half-open intervals

[a, b) as a base for its topology. If X is a subspace of S, then a base B for X in S

is a family B of open subsets of S such that if U ⊆ S is open and x ∈ X ∩ U then

x ∈ B ⊆ U for some B ∈ B. We denote the set of integers {0, 1, . . .} by ω.

We first discuss the intuition behind the definition that follows. Suppose that

B′ is a base, and we are to pick open sets from it, one at a time, to form a cover

C ⊆ B′. If we pick sets that are too big too often, then these sets may overlap too

much, and as a result we may end up with a cover C that is not locally finite, or

even not point-finite. If we pick sets that are too small then there will be too many

gaps that are not covered, and at the end C may not be a cover. Think of the usual

construction of the Cantor set, as being an attempt to use the middle-third open
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intervals to form a cover of the unit interval, but at the end the Cantor set is exactly

the part that was not covered.

Suppose that we want to make it difficult for C to be a point-finite cover, then

what we want is for B′ to have only sets that are either too big or too small. Suppose

we are to construct B′ first, with B′ ⊆ B, where B is given. To do this, we need B to

have enough sets of suitable sizes. The following definition works.

Definition 2.1. Assume thatX is dense in S. Call a base B forX in S a common

base if there are an interval T and sets An, n ∈ ω, such that T ∩ X =
⋃

n∈ω

An and

for each interval I ⊆ T and each n there are ε > 0 and an interval J ⊆ I such

that for each x ∈ J ∩ An there is B ∈ B (depending on I, n, ε, J and x) with

[x, x + ε) ⊆ B ⊆ [x,∞) ∩ I.

Recall that a non-empty set of reals is perfect if it is closed and has no isolated

points. A set of reals is totally imperfect if it does not contain any perfect set.

Theorem 2.2. Let X be a dense subspace of the Sorgenfrey line S such that

S \ X is dense and totally imperfect. Then every common base B for X contains a

coarse base B′. Thus, if X is base-base paracompact, then only a base that is not

common could possibly witness this.

P r o o f. Note that in the above definition we may replace “for each x ∈ J ∩An”

by “for each x ∈ J ∩
(

⋃

m6n

Am

)

”. We may also assume that the length λ(J) < ε

and therefore the right endpoint of J belongs to [x, x + ε), and to B.

Let Σ = {s : s is a finite sequence of non-negative integers}. If s = 〈k, l, . . . , i〉

and j ∈ ω let s⌢〈j〉 denote the sequence 〈k, l, . . . , i, j〉. Is and Js will always denote

left-closed, right-open intervals, with the left endpoint of Js in S \ X , and its right

endpoint in X . Start with any I∅ ⊆ T (where ∅ is the empty sequence). This defines

Is for all s with |s| = 0, where |s| is the length of s. Recursively, assume n > 0 and

Is were defined whenever |s| 6 n. We will define Is for |s| = n + 1.

For each s with |s| = n fix εs > 0 and Js ⊆ Is with λ(Js) < εs such that for every

x ∈ Js ∩
(

⋃

m6n

Am

)

we can fix Bs(x) ∈ B with [x, x + εs) ⊆ Bs(x) ⊆ [x,∞) ∩ Is.

Using a sequence of points decreasing to the left endpoint of Js, represent Js minus its

left endpoint as the disjoint union of countably many left-closed, right-open intervals

Is⌢〈l〉, l ∈ ω, where the left endpoint of Is⌢〈l〉 is the right endpoint of Is⌢〈l+1〉, i.e.

Is⌢〈l+1〉 is “the next and to the left of” Is⌢〈l〉. We also require that λ(Is) < |s|−1

for each s ∈ Σ, and that the right endpoint of Js, and therefore the right endpoints

of all Is⌢〈l〉, l ∈ ω, are bounded away a distance at least εs from the right endpoint

of Is. It is easily seen by induction on |s| that Is ∩ Is′ = ∅ if |s| = |s′| and s 6= s′.
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If σ is an infinite sequence of non-negative integers let σ|n denote the sequence of

the first n many members of σ. There is a unique point pσ ∈
⋂

n∈ω

Iσ|n. Such a pσ

may or may not be in X . If a point x ∈ X happens to be pσ for some σ we say that

x is of type one. Then {x} =
⋂

n∈ω

Jσ|n. Pick n(x) with x ∈ An(x). Then the family

B1(x) = {Bσ|n(x) : n > n(x)} is a local base at x.

Call an x ∈ X of type two if x is not of type one. If x ∈ X \ I∅ then clearly x is

of type two: Then let B2(x) = {B ∈ B : x ∈ B ⊆ S \ I∅}. If x ∈ X ∩ I∅ and x is

of type two then there is an s ∈ Σ such that x ∈ Is but x 6∈ Is⌢〈l〉 for any l ∈ ω, or

equivalently x 6∈ Js. Let B2(x) = {B ∈ B : x ∈ B ⊆ Is \ Js}. If x is of type two then

B2(x) is a local base at x. Note that if p ∈ X is of type one and x ∈ X is of type

two then no member of B2(x) contains p.

Let B1 =
⋃

{B1(x) : x is of type one} and B2 =
⋃

{B2(x) : x is of type two}. Then

the family B′ = B1 ∪ B2 is a base for X in S contained in B.

Suppose that C ⊆ B′ and C is point-finite at each x ∈ X . Then for each s ∈ Σ

there could be at most finitely many x ∈ Js ∩
(

⋃

n6|s|

An

)

for which Bs(x) ∈ C, since

all such Bs(x) contain the right endpoint of Js which is in X . Let xs be the minimal

such x (and if there are no such x let xs = ∞). Then xs is strictly larger than

the left endpoint of Js since the latter is not in X . Hence Is⌢〈l〉 is to the left of

xs for infinitely many l. Recursively we may construct the smallest set Σ′ ⊂ Σ and

simultaneously pick distinct ks and ls for each s ∈ Σ′ such that: (a) ∅ ∈ Σ′, and

(b) Is⌢〈ks〉 and Is⌢〈ls〉 both are to the left of xs, and therefore they do not intersect

Bs(x), if Bs(x) ∈ C for some x. Note that they also do not intersect any Bs′(x′)

with |s′| = |s| and s′ 6= s.

Hence the set P =
⋂

n∈ω

(
⋃

{Is : s ∈ Σ′, |s| = n}
)

is a Cantor set (in the usual

topology of the reals) that does not intersect any element of C ∩ B1. Since S \ X is

totally imperfect there is p ∈ X ∩ P . Then p is not covered by C ∩ B1. Since p is of

type one, p is not covered by C ∩ B2 either. Therefore C does not cover X . �

3. Examples and problems

If X is as in Theorem 2.2 we do not know if every base for X in S is common. If so,

then X would be paracompact but not base-base paracompact. The base of all half-

open intervals is common (which by Theorem 2.2 implies that e.g. the irrationals as a

subspace of S are not totally paracompact, relating to Problem 3.1 of [2]). Given any

common base B, for simplicity consisting of half-open intervals, and any partition

{Em : m ∈ ω} of X , we obtain another common base B̃ by removing from B all
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[x, x + t) with x ∈ Em and t > 1/m. The sets An from Definition 2.1 that work for

B need not work for B̃, but the sets An ∩ Em, n, m ∈ ω, would.

E x am p l e 3.1. Let S \X be dense and totally imperfect. Since |X | = 2ω = c we

may list X = {xα : α < c}. As in the proof that under MA there is a scale [24], we

may find a family of monotone increasing functions {fα : α < c} such that if β < α

then fα(n) goes to ∞ faster, as n → ∞, than fβ(n) does (e.g. lim
n→∞

fα(n)/fβ(n +

k) = ∞ for all k). Then 1/fα(n) goes to 0 faster than 1/fβ(n) does. If Bxα
=

{[xα, xα + 1/fα(n)) : n ∈ ω} then B =
⋃

α<c

Bxα
is a base for X in S.

We do not know if the base B in the above example is common or not. But the

mere variety of “essentially different” local bases at different points (as in B above)

is not enough to produce a base that is not common, as the next example shows.

E x am p l e 3.2. Consider S ∩ [0, 1] instead of S. Let X be the set of all dyadic

irrationals in [0, 1], i.e. all sums x =
∞
∑

k=1

ak/2k where ak ∈ {0, 1} and both ak = 0

and ak = 1 occur infinitely often. Define a local base Bx at x as Bx = {[x, x + 2−k) :

ak = 1}. Clearly Bx = {[x, x + 1/fx(n)) : n ∈ ω} for a unique monotone increasing

fx. Then given any g : ω → ω there is x ∈ X such that fx(n) > g(n) for all n.

Nevertheless, we now show that the base for X obtained in this way is common. Let

T = [0, 1) and An = X for all n. Given any interval I ⊆ T , fix a finite sequence

u of 0’s and 1’s such that [u] ⊆ I where [u] is the set of all x ∈ [0, 1] whose dyadic

representation 〈a1, a2, . . .〉 starts with u. Let J = [u⌢〈0〉⌢〈1〉]. Then for each x in

J ∩X there is an element B(x) in Bx corresponding to the 1 at the end of u⌢〈0〉⌢〈1〉.

All these B(x) have the same length ε = 2−|u⌢〈0〉⌢〈1〉| and are contained in I.

Peter de Caux [3] proved that every finite power of S is a hereditarily D-space.

He used a special base, described below, easily seen to be common, too.

E x am p l e 3.3 [3]. The base B consists of all [x, ti) where i ∈ ω and ti is the

smallest integer multiple of 2−i larger than x.

Q u e s t i o n 3.4. Let X be as in Theorem 2.2. (a) Is there a base for X that is

not common? (b) Is X an example of a space that is not base-base paracompact?

Since Lusin subsets of S are base-base paracompact, one may inquire about other

“small” subsets of S, including some that exist in ZFC, which leads to the following

question:

Q u e s t i o n 3.5. Is every Marczewski null subspace of the Sorgenfrey line base-

base paracompact? (A set M of real numbers is Marczewski null if for each perfect

set P there is a perfect set Q contained in P \ M .)

399



Recall that w(X) is the weight of X , i.e. the minimal possible cardinality of a base.

X is base-paracompact [21], [22] if it has an open base B with |B| = w(X), such that

every open cover has a locally finite refinement with elements of B. (A base with

only the latter property is called fine in [4], [12].) Base-base paracompact spaces are

base-paracompact [21], but these two properties seem quite different for the following

reason. Suppose B1 ⊆ B ⊆ B2 are bases for a space X . If B witnesses base-base

paracompactness, then so does B1, but B2 need not. The opposite holds for base-

paracompactness: If B witnesses base-paracompactness, then so does B2 as long as

|B2| = w(X), but B1 need not. It is not known if paracompact spaces are base-

paracompact [21], [22], see also [19], [20]. But, it is known that Lindelöf spaces, in

particular every subspace of S, are base-paracompact [21], [22], see also [23].

The author acknowledges helpful discussions with his advisor Gary Gruenhage,

John E.Porter and Michael Granado, and improvements suggested by the referee.
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