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Abstract. For subspaces, X and Y , of the space, D, of all derivatives M(X, Y ) denotes
the set of all g ∈ D such that fg ∈ Y for all f ∈ X. Subspaces of D are defined depending
on a parameter p ∈ [0,∞]. In Section 6, M(X, D) is determined for each of these subspaces
and in Section 7, M(X, Y ) is found for X and Y any of these subspaces. In Section 3,
M(X, D) is determined for other spaces of functions on [0, 1] related to continuity and
higher order differentiation.
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1. Introduction

A derivative is a function, f , that is everywhere the derivative of another function,

F . At the close of the 19th century it was observed that the product of two derivatives

need not be a derivative (see [7]). In fact if f is a derivative, f 2 need not be a

derivative. (For a treatment of this topic see [1].) Yet it is easy to see that the product

of a derivative with a continuously differentiable function is a derivative. However,

we must not drop the word, “continuously”. For example if ϕ(x) = x2 cosx−3 and

ψ(x) = x2 sinx−3 for x 6= 0 and ϕ(0) = ψ(0) = 0, then ϕ and ψ are both everywhere

differentiable. Setting ω = ϕ′ψ − ϕψ′, a simple calculation shows that ω(0) = 0

while ω(x) = 3 for all x 6= 0. Thus ω is not a derivative because derivatives have

the Darboux property. Since ϕ′ψ+ϕψ′ is a derivative (of ϕψ) and ϕ′ψ−ϕψ′ is not,

neither ϕ′ψ nor ϕψ′ can be derivatives. These observations lead naturally to the

problem of describing the system, W , of all functions, g, such that fg is a derivative

for every derivative, f . As was mentioned above, not every derivative, nor even every
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differentiable function belongs to W . On the other hand it can be shown that W

contains some discontinuous functions as can be seen from the characterization of the

class W given by Fleissner in [2] (also see [3]). In Theorem 6.4 a simpler description

of W is given.

In [3] Fleissner posed the similar problem of finding the system of all functions

g such that fg is a summable derivative for each summable derivative f . (This

question was answered in [4].) It seems natural to investigate the following more

general problem. Let X and Y be classes of derivatives. Describe the class of all

functions g such that fg ∈ Y for each f ∈ X . This task is accomplished here for

several subspaces of the space of all derivatives; some of which are familiar while

others are introduced for the first time in this paper.

In the next section we introduce some of the notation and terminology to be used

and prove several auxiliary results which will be employed throughout the remainder

of the work. Section 3 deals with the spaces of derivatives, continuous functions and

Peano differentiable functions. In Section 4 a continuum of new spaces of derivatives

is introduced and several preliminary results are established. Section 5 contains

additional auxiliary results which will be used in Section 6 to obtain the first set

of main results of the article; namely, characterizing the multipliers of the spaces

introduced in Section 4 into the space of all derivatives. In the final section the

multipliers between the spaces of Section 4 are found. The results of Section 6 are

used there.

2. Notation and auxiliary results

Throughout, � will denote the natural number, � will denote the real line, and
� + = {x ∈ � : x > 0}. The interval [0, 1] is denoted by I . The major space of

functions dealt with, the derivatives, is denoted by D and defined by

D = {f : I → � ; there is an F : I → � such that F ′(x) = f(x) for each x ∈ I}

where differentiation at the endpoints of I is in the unilateral sense. Clearly D is a

vector space. The symbols ∆, C, Cap denote respectively the space of all differen-

tiable, continuous and approximately continuous functions on I . ThusD = {F ′ ; F ∈

∆}. The space Cap plays a major role in Section 7. For any class S of functions, bS

and S+ denote respectively the bounded and nonnegative function in S. It is easy

to verify that bCap ⊂ D. For an open interval J ⊂ � , C(J) and C∞(J) will denote

respectively the continuous functions and the infinitely differentiable functions on J

with the convention that C∞ = C∞( � ).
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Measure and measurable refer to the Lebesgue concepts. The measure of a measur-

able set S will be denoted by |S|. On the other hand, integrable means Denjoy-Perron

integrable and summable means absolutely (i.e., Lebesgue) integrable. The symbols∫
J
f and

∫ b
a
f will denote the Denjoy-Perron integral of f (or the Lebesgue integral

in case f is summable). As usual
∫ b
a
f = −

∫ a
b
if b < a and if

∫ a
b
f exists. The reader

is reminded that f ∈ D need not be summable (that is, Lebesgue integrable) on I

but is (Denjoy-Perron) integrable on I . Indeed if F (x) =
∫ x
0 f , then F

′(x) = f(x)

for each x ∈ I .

Let J be a compact subinterval of � and f : J → � . Then osc(J, f) and Var(J, f)

denote respectively the oscillation and variation of f on J . If a and b are the

endpoints of J , then we write osc(a, b, f) and Var(a, b, f) even if b < a.

Now the second major concept of this article, multiplier, is defined and elementary

properties stated. Let X,Y ⊂ D. Then

M(X,Y ) = {g ∈ D ; fg ∈ Y for each f ∈ X}.

In case Y = D we write M(X); that is, M(X) = M(X,D). In Section 6, M(X)

is characterized for the continuum of subspaces of D that will be introduced in

Section 4, and in Section 7 M(X,Y ) is found where X and Y are any of these same

subspaces. The proofs of the first six assertions about M(X,Y ) are easy and left to

the reader.

Proposition 2.1. Let X,Y ⊂ D with Y a vector space. Then M(X,Y ) is a

vector space.

Proposition 2.2. Let X,Y ⊂ D with 1 ∈ X . (That is, the function f(x) = 1 for

all x ∈ I belongs to X .) Then M(X,Y ) ⊂ Y .

Proposition 2.3. Let X1 ⊂ X ⊂ D and Y ⊂ Y1 ⊂ D. Then M(X,Y ) ⊂

M(X1, Y1).

Proposition 2.4. Let X ⊂ D be a vector space. Then M(X,X) is an algebra.

Proposition 2.5. Let 1 ∈ X ⊂ D with X closed under multiplication. Then

M(X,X) = X .

Proposition 2.6. Let X,Y ⊂ D and for each α ∈ Ω let Xα, Yα ⊂ D. Then

M
( ⋃
α∈Ω

Xα, Y
)

=
⋂
α∈Ω

M(Xα, Y ) and M
(
X,

⋂
α∈Ω

Yα

)
=

⋂
α∈Ω

M(X,Yα).
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Proposition 2.7. Let X ⊂ D. Then M(M(M(X))) = M(X).

��� �!�#"
. Obviously X ⊂ M(M(X)) and consequently M(X) ⊂ M(M(M(X))).

By Proposition 2.3 the first containment implies M(X) ⊃M(M(M(X))). �

Fundamental to many of the remaining results of this and later sections is the

Second Mean Value Theorem for the Denjoy-Perron integral the proof of which can

be found on page 246 of Saks’ book [8]. For the remainder of the section let a, b ∈ �
with a < b and let J = [a, b].

Theorem 2.8. Let f : J → � be monotone and g : J → � be integrable. Then
there is a ξ ∈ J such that

∫
J
fg = f(a)

∫ ξ
a
g + f(b)

∫ b
ξ
g.

Lemma 2.9. Let ε, τ ∈ � + , let p ∈ (0, 1) and let g : (0, τ) → � be integrable.
Suppose lim

x→0+

1
x

∫ x
0
g = 0. Then there is an f ∈ C+

∞ such that f = 0 on � \ (0, τ),
∫ $
f = 1,

∫ $
fp < ε and |

∫ τ
0 fg| < ε.

��� �!�#"
. There is a δ ∈ (0, τ) such that 3pδ1−p < ε and |

∫ x
0 g| <

1
4εx for

each x ∈ (0, δ]. Let γ = 1
3δ. There is an h ∈ C∞ such that h = 0 on � \ (0, δ),

h = 1 on (γ, 2γ) and h is monotone on (0, γ) as well as on (γ, δ). Clearly
∫ δ
0 h > γ.

By Theorem 2.8 there are α ∈ [0, γ] and β ∈ [γ, δ] such that
∫ γ
0
hg =

∫ γ
α
g and∫ δ

γ hg =
∫ β
γ g. Hence |

∫ δ
0 hg| = |

∫ β
α g| 6 |

∫ α
0 g| + |

∫ β
0 g| < 1

4ε(γ + δ) = εγ. Set

f = h/
∫ δ
0 h. Since f 6 1/γ, we have

∫ τ
0 f

p 6 δ(3/δ)p = 3pδ1−p < ε and |
∫ τ
0 fg| =

|
∫ δ
0
hg|/

∫ δ
0
h < ε. �

Proposition 2.10. Let ε > 0, let p ∈ (0, 1) and let G : J → � be integrable.
Suppose lim

x→a+

1
x−a

∫ x
a G = G(a) and lim

x→b−

1
b−x

∫ b
x G = G(b). Then there is an f ∈ C∞

such that f = 0 on � \ J ,
∫
J f = 0,

∫
J |f | = 2, −1 6

∫ x
a f 6 0 for each x ∈ J ,∫

J
|f |p < ε and

(1)

∣∣∣∣G(b) −G(a) −

∫

J

fG

∣∣∣∣ < ε.

��� �!�#"
. Let c ∈ (a, b), let J1 = [a, c] and J2 = [c, b]. By Lemma 2.9 for

i = 1, 2 there is fi ∈ C+
∞ such that fi = 0 on � \ Ji,

∫
J fi = 1,

∫
J f

p
i < 1

2ε and

|G(a)−
∫
J
f1G| = |

∫
J
(G(a)−G)f1| <

1
2ε, |G(b)−

∫
J
f2G| <

3
2 . Take f = f2−f1. �

The proof of the next lemma is complicated due to the lack of absolute integrability

for the Denjoy-Perron integral.
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Lemma 2.11. Let g : J → � be integrable and let ε > 0. Then there is an

F ∈ C∞ such that

(2) F = 0 on � \ J, 0 6 F 6 1 on J

and

(3)

∣∣∣∣
∫

J

g −

∫

J

Fg

∣∣∣∣ < ε.

��� �!�#"
. For each x ∈ J let G(x) =

∫ x
a g. Then G is continuous on J ; so

G satisfies the hypotheses of Proposition 2.10. Let f be as in the conclusion of

Proposition 2.10 and put F (x) = −
∫ x
a f . Then (2) is obvious. From integration by

parts
∫
J
Fg =

∫
J
fG which combined with (1) yields (3). �

The lack of absolute integrability means that in the next assertion its possible for∫
J
|g| = +∞.

Proposition 2.12. Let g : J → � be integrable and let Q ∈ � with Q <
∫
J
|g|.

Then there are f1, f2 ∈ C∞ such that for i = 1, 2, |fi| ∈ C∞, fi = 0 on � \J , |fi| 6 1

on J ,
∫
J
f1g > Q,

∫
J
f2 = 0 and

∫
J
f2g >

1
2 (Q− |

∫
J
g|).��� �!�#"

. As is well known
∫
J
|g| is the variation of any indefinite integral of g.

Consequently there is a partition a = x0 < x1 < . . . < xn = b of [a, b] such that

S =
n∑
k=1

|
∫ xk

xk−1
g| > Q. For k = 1, . . . , n let Jk = [xk−1, xk] and let αk =

∫
Jk
g.

Let ε = S−Q
2n . By Lemma 2.11, for each k = 1, . . . , n there is ϕk ∈ C+

∞ such that

ϕk = 0 on � \ Jk, 0 6 ϕk 6 1 on J and if βk =
∫
Jk
ϕkg, then |αk − βk| < ε. Let

K = {1, . . . , n},K0 = {k ∈ K ; αk > 0},K1 = K\K0. For i = 0, 1 let Si =
∑
k∈Ki

|αk|,

hi =
∑
k∈Ki

ϕk and Bi =
∫
J
hi. Clearly S0 + S1 = S and S0 − S1 =

∫
J
g. Replacing g

by −g if necessary it may be assumed that B0 6 B1. There is an r ∈ [0, 1] such that

B0 = rB1. Set f1 = h0 − h1 and f2 = h0 − rh1. Then
∫

J

f1g =
∑

k∈K0

βk −
∑

k∈K1

βk >
∑

k∈K0

αk −
∑

k∈K1

αk − nε = S − nε =
S +Q

2
> Q

and
∫

J

f2g =
∑

k∈K0

βk −
∑

k∈K1

rβk >
∑

k∈K0

αk − r
∑

k∈K1

αk − nε > S0 − nε

=
S +

∫
J
g

2
− nε =

Q+
∫
J
g

2
>
Q− |

∫
J
g|

2
.

Clearly
∫
J
f2 = B0 − rB1 = 0 and the rest is obvious. �
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Corollary 2.13. Let g : J → � be integrable, let ϕ : (a, b) → � + be continuous

and let Q ∈ � with Q <
∫
J ϕ|g|. Then there is an f ∈ C∞ such that |f | ∈ C∞, f = 0

on � \ J , |f | 6 ϕ on (a, b) and
∫
J
fg > Q.

��� �!�#"
. Since ϕ is continuous on (a, b), there is an n ∈ � and xk ∈ [a, b] for

k = 0, 1, . . . , n with a = x0 < x1 < . . . < xn = b such that for k = 1, . . . , n there is

a ck ∈ [0,∞) with ck 6 ϕ on Jk = [xk−1, xk] such that
n∑
k=1

∫
Jk
ck|g| > Q. For each

k = 1, . . . , n there is a Qk <
∫
Jk
ck|g| such that

n∑
k=1

Qk > Q. If ck = 0, let fk = 0

on � . If ck > 0, by Proposition 2.12 there is an fk ∈ C∞ such that |fk| ∈ C∞,

fk = 0 on � \ Jk, |fk| 6 1 on Jk and
∫
Jk
fkg > Qk

ck
. Set f =

n∑
k=1

ckfk. Then
∫
Jk
fg =

∫
Jk
ckfkg > Qk for each k = 1, . . . , n (even if ck = 0 since then Qk < 0).

Thus
∫
J
fg > Q. Obviously |f | ∈ C∞ and |f | < ϕ on (a, b). �

3. Multipliers of continuous functions and

Peano differentiable functions

Let ∆2 = {f : I → � ; f is twice differentiable on I} (Recall I = [0, 1].) and let

f ∈ ∆2. Then f
′ ∈ C and using integration by parts it follows that fg ∈ D for each

g ∈ D. Thus M(∆2) = D. Now set P0 = C and for n ∈ � let Pn = {f : I → � ; f
is n-times Peano differentiable on I}. (A function, f , is n-times Peano differentiable

at y ∈ I means there is a polynomial, F , (of degree 6 n) with F (y) = f(y) such

that f(x) − F (x) = o(|y − x|n).) It is well known that P1 = ∆ and that ∆ % Pn
if n ∈ � \ {1}. In fact if n ∈ � , n 6= 1, there are functions f ∈ Pn with f

′

discontinuous. Consequently finding M(P2) is more difficult than finding M(∆2).

Corollary 3.6 characterizesM(Pn) for n ∈ � ∪{0}. Theorem 3.9 is a modification of

Corollary 3.6 for n = 1. In the assertions to follow the reader will notice a duality

which is a recurring theme in this article. It is between a certain limit being zero and

an associated limit superior being finite. One of these conditions will appear in the

assumption and the other in the conclusion. For the first occurrence of this duality

compare Lemmas 3.1 and 3.3.

Lemma 3.1. Let ϕ : (0, 1] → � + be continuous and let g : I → � . Suppose
lim
x→0+

1
x

∫ x
0 fg = 0 for each f ∈ (C∞( � + ))+ such that lim sup

x→0+

f(x)/ϕ(x) <∞. Then

lim
x→0+

1
x

∫ x
0
ϕ|g| = 0.
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��� �!�#"
. It is easy to construct a strictly positive h ∈ C∞( � + ) such that h 6 ϕ

on (0, 1]. By assumption lim
x→0+

1
x

∫ x
0 hg = 0. It follows that

∫ b
0 hg exists for some

b ∈ (0, 1). Because h is strictly positive,
∫ b
a g exists for each a ∈ (0, b).

For each n ∈ � ∪{0}, let xn = b
2n and Jn = [xn, xn−1]. Let n ∈ � . If ∫

Jn
ϕ|g| = ∞,

set An = 1. Otherwise set An =
∫
Jn
ϕ|g| − xn

n . By applying Corollary 2.13 to Jn for

each n ∈ � , it follows that there is an f ∈ C∞( � + ) such that |f | ∈ C∞( � + ), |f | 6 ϕ

on (0, 1] and
∫
Jn
fg > An for each n ∈ � . Let f1 = 1

2 (2|f | + f) and f2 = 1
2 (2|f | − f).

Clearly for j = 1, 2, fj ∈ (C∞( � + ))+ and 1
2 6 fj 6 3

2ϕ on (0, 1]. By assumption

lim
x→0+

1
x

∫ x
0 fjg = 0 for j = 1, 2 and consequently lim

x→0+

1
x

∫ x
0 fg = 0. It follows that

the set of numbers n ∈ � for which An = 1, that is, for which
∫
Jn
ϕ|g| = ∞, is

finite. Hence there is an N ∈ � such that n > N implies
∫
Jn
ϕ|g| <

∫
Jn
fg + xn

n .

Let x ∈ (0, xN ). Then there is an n > N such that x ∈ Jn, and using the previous

inequality

1

x

∫ x

0

ϕ|g| 6
1

xn

∫ xn−1

0

fg +
1

nxn

∞∑

i=n

b

2i
= 2

(
1

xn−1

∫ xn−1

0

fg

)
+

2

n
.

Since lim
x→0+

1
x

∫ x
0
fg = 0, it follows easily that lim

x→0+

1
x

∫ x
0
ϕ|g| = 0. �

Lemma 3.2. Let G : (0, 1) → � be nonnegative and measurable. Suppose
lim sup
x→0+

1
x

∫ x
0
Gβ <∞ for each strictly increasing function β ∈ C∞( � + ) such that

lim
x→0+

β(x) = 0. Then lim sup
x→0+

1
x

∫ x
0
G <∞.

��� �!�#"
. Suppose to the contrary that lim sup

x→0+

1
x

∫ x
0 G = ∞. Define two sequences

{xn} and {yn} as follows. Let y1 = 1 and x1 = 1
2 . Given xn−1 by assumption there

is a yn ∈ (0, xn−1) with
∫ yn

0
G > n2yn. Let xn ∈ (0, yn

2 ) with
∫ yn

xn
G > n2yn. It is

easy to construct a strictly increasing β ∈ C∞( � + ) such that β > 1
n on (xn, yn) with

lim
x→0+

β(x) = 0. Then n ∈ � implies ∫ yn

0
Gβ > 1

n

∫ yn

xn
G > nyn; or

1
yn

∫ yn

0
Gβ > n.

Thus lim sup
x→0+

1
x

∫ x
0
Gβ = ∞ contrary to hypothesis. �

Lemma 3.3. Let ϕ : (0, 1] → � + be continuous and let g : I → � . Suppose
lim
x→0+

1
x

∫ x
0
fg = 0 for each f ∈ (C∞( � + ))+ such that lim

x→0+

f(x)
ϕ(x) = 0. Then

(4) lim sup
x→0+

1

x

∫ x

0

ϕ|g| <∞.

��� �!�#"
. Let β ∈ C0( � + )+ be strictly increasing with lim

x→0+
β(x) = 0. Let

ψ = ϕβ. Then ψ is continuous on (0, 1]. Let f ∈ (C∞( � + ))+ with lim sup
x→0+

f(x)
ψ(x) <∞.
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Since lim
x→0+

β(x) = 0, lim
x→0+

f(x)
ϕ(x) = 0. By assumption lim

x→0+

1
x

∫ x
0 fg = 0. By Lem-

ma 3.1, lim
x→0

1
x

∫ x
0 ϕβ|g| = 0. By Lemma 3.2 with G = ϕ|g|, (4) follows. �

The duality alluded to earlier is connected to multipliers as is exhibited in the

following two assertions.

Theorem 3.4. Let ϕ : (0, 1] → � + be continuous with lim
x→0+

ϕ(x) = 0 and let P

be a class of functions with C ⊂ P ⊂W . Let

S =

{
f ∈ D ; for each y ∈ I there is a F ∈ P with F (y) = f(y)

such that lim sup
x→y

|f(x) − F (x)|

ϕ(|x − y|)
<∞

}
.

Let

T =

{
g ∈ D ; y ∈ I implies lim

x→y

1

x− y

∫ x

y

ϕ(|t− y|)|g(t)| dt = 0

}
.

Then M(S) = T.

��� �!�#"
. Let g ∈ T . To show that g ∈ M(S) let f ∈ S and let y ∈ I .

Let F be the function in P from the definition of S and set f1 = f − F . Since

g ∈ T , lim
x→y

1
x−y

∫ x
y f1g = lim

x→y

∫ x
y
f(t)−F (t)
ϕ(|t−y|) ϕ(|t− y|)g(t) dt = 0. Since g ∈ D and

since F ∈ P ⊂ W , Fg ∈ D and consequently lim
x→y

1
x−y

∫ x
y Fg = F (y)g(y). Hence

lim
x→y

1
x−y

∫ x
y
fg = F (y)g(y) = f(y)g(y). Therefore fg ∈ D. Thus g ∈ M(S).

Now let g ∈ M(S). By definition g ∈ D. Let y ∈ [0, 1) and let f0 ∈ (C∞( � + ))+

with lim sup
x→0+

f0(x)
ϕ(x) <∞. Set f = 0 on [0, y] and f(t) = f0(t−y) for t ∈ (y, 1]. Because

lim
x→0+

ϕ(x) = 0, f ∈ C. To show that f ∈ S, let z ∈ I . If z 6 y, set F = 0. If z > y,

let F = f . Because f0 ∈ C∞, F ∈ C ⊂ P . Hence f ∈ S. Since g ∈ M(S), fg ∈ D

so that

lim
x→0+

1

x

∫ x

0

f0(t)g(y + t) dt = lim
x→0+

1

x

∫ y+x

y

fg = f(y)g(y) = 0.

By Lemma 3.1, lim
x→0+

1
x

∫ x
0 ϕ(t)|g(y + t)| dt = 0. Similarly if y ∈ (0, 1], it can be shown

that lim
x→0−

1
x

∫ x
0 ϕ(|t|)|g(y + t))| dt = 0. It follows that g ∈ T. �
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Theorem 3.5. Let ϕ : (0, 1] → � + be continuous with lim
x→0+

ϕ(x) = 0 and let

C ⊂ P ⊂W . Let

S =

{
f : ∈ D ; for each y ∈ I there is a F ∈ P with F (y) = f(y)

such that lim
x→y

|f(x) − F (x)|

ϕ(|x − y|)
= 0

}
.

Let

T =

{
g ∈ D ; y ∈ I implies lim sup

x→y

1

x− y

∫ x

y

ϕ(|t− y|)|g(t)| dt <∞

}
.

Then T = M(S).��� �!�#"
. The proof parallels that of the previous one except that Lemma 3.3 is

used in place of Lemma 3.1. �

Corollary 3.6. Let n ∈ � ∪ {0}. Then

M(Pn) =

{
g ∈ D ; y ∈ I implies lim sup

x→y

1

y − x

∫ x

y

|t− y|n|g(t)| dt <∞

}
.

��� �!�#"
. In Theorem 3.5 let ϕ(x) = xn and choose P to be the set of all

polynomials of degree no more than n. The reader can easily verify that S = Pn and

the assertion follows immediately from Theorem 3.5. �

The next lemma is used in the proofs of remaining two theorems of this section.

The first of these theorems characterizes the multipliers of the locally Lipschitz func-

tions while the second characterizes M(∆).

Lemma 3.7. Let ϕ : (0, 1) → � be nonnegative and measurable. Suppose there
is a K > 0 such that for all z ∈ (0, 1

2 ) and for all t ∈ [z, 2z] 1
Kϕ(z) 6 ϕ(t) 6 Kϕ(z).

Let f : (0, 1) → � be nonnegative and measurable. Then
(a) lim

x→0+

ϕ(x)
x

∫ 2x

x f = 0 if and only if lim
x→0+

1
x

∫ x
0 ϕf = 0

and

(b) lim sup
x→0+

ϕ(x)
x

∫ 2x

x f <∞ if and only if lim sup
x→0+

1
x

∫ x
0 ϕf <∞.

��� �!�#"
. ⇒ (for both (a) and (b)). Let e > 0 and δ > 0 such that ϕ(x)

x

∫ 2x

x
f < e

for all x ∈ (0, δ). Let x ∈ (0, δ). For each n ∈ � let zn = x
2n . Then

∫ x

0

ϕf =
∑

n∈ &
∫ 2zn

zn

ϕf 6
∑

n∈ & Kϕ(zn)

∫ 2zn

zn

f 6 K
∑

n∈ & ezn = Kex.
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⇐ (for both (a) and (b)). Let e > 0 and δ > 0 such that 1
x

∫ x
0
ϕf < e for all

x ∈ (0, δ). Let x ∈ (0, δ2 ). Then for t ∈ [x, 2x],

ϕ(x)

∫ 2x

x

f 6 K

∫ 2x

x

ϕf 6 K

∫ 2x

0

ϕf < Ke2x.

�

Theorem 3.8. Let

Liploc = {f : I → � ; for each y ∈ I there is a K ∈ (0,∞) such that

|f(x) − f(y)| 6 K|x− y| for all x ∈ I}.

Then

M(Liploc) =

{
g ∈ D ; for each y ∈ I lim

h→0

∫ y+2h

y+h

|g| = 0

}
.

��� �!�#"
. For each x ∈ (0, 1] let ϕ(x) = x. Then Liploc is the class S for the

function ϕ where for f ∈ Liploc and for y ∈ I let F be the constant function f(y).

Then Theorem 3.4 gives one form forM(Liploc). By part (a) of Lemma 3.7 this form

of M(Liploc) is equivalent to that in the conclusion of Theorem 3.8. �

Theorem 3.9. M(∆) = {g ∈ D; for each y ∈ I lim sup
h→0

|
∫ y+2h

y+h
|g|| <∞}.

The proof is the same as that of Theorem 3.8 except that Theorem 3.5 and part

(b) of Lemma 3.7 are used in place of Theorem 3.4 and part (a) of Lemma 3.7.

4. Norms and products of derivatives

In this section the spaces that are the main focus of this article are introduced

and some elementary properties are established. The main results of this section

are contained in the last two assertions which establish a connection between these

spaces and powers of derivatives.'(�*),+-) ./�10
4.1. Throughout this section J ⊂ � will denote a compact interval

with |J | > 0. Let f : J → � be measurable and let p ∈ (0,∞). Put

‖f‖J,p =

(
1

|J |

∫

J

|f |p
)1/p

.

(If
∫
J |f |

p = ∞, we set ‖f‖J,p = ∞.) We set ‖f‖J,∞ = ess sup{|f(x)| : x ∈ J}.

Moreover if a and b are the endpoints of J , then we also write ‖f‖a,b,p for ‖f‖J,p
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even if b < a. If the meaning of J is clear from the context, we will write ‖f‖p for

‖f‖J,p. The essential fact to remember is that the function identically 1 has norm

1 for any p and any J . Of course the triangle inequality holds if p ∈ [1,∞]. For

p ∈ (0, 1) we will use the following substitute.

Lemma 4.2. Let f, g : J → � be measurable and let p ∈ (0, 1). Then

‖f + g‖J,p 6 21/p max{‖f‖J,p, ‖g‖J,p}.

��� �!�#"
. Let Q = max{‖f‖J,p, ‖g‖J,p}. Since p ∈ (0, 1),

|J | ‖f + g‖pp =

∫

J

|f + g|p 6

∫

J

|f |p +

∫

J

|g|p 6 2|J |Qp

from which the assertion follows easily. �

'(�*),+-) ./�10
4.3. In Section 7 of the paper we will often have three exponents, p, q

and r ∈ (0,∞] with q 6 p satisfying 1
p + 1

r = 1
q . We adopt the standard conventions

that 1
∞ = 0. In case q = 1, then p > 1 and we denote the corresponding exponent r

as usual by p′ so that 1
p + 1

p′ = 1.

The following useful fact is a consequence of Hölders inequality.

Lemma 4.4. Let f, g and J be as in Lemma 4.2 and let p, q, r ∈ (0,∞] with q 6 p

and 1
p + 1

r = 1
q . Then ‖fg‖J,q 6 ‖f‖J,p‖g‖J,r.��� �!�#"

. Suppose q ∈ (0,∞). By Hölders inequality

‖ |f |q|g|q‖J,1 6 ‖ |f |q‖J,p/q‖ |g|
q‖J,r/q.

The assertion then follows easily. If q = ∞, then p, r = ∞ and the assertion is

clear. �

Proposition 4.5. Let f and J be as in Lemma 4.2 and let p, q ∈ (0,∞] with

q < p. Then ‖f‖J,q 6 ‖f‖J,p.��� �!�#"
. Let r ∈ (0,∞] satisfy 1

p + 1
r = 1

q . Then by Lemma 4.4 ‖f‖J,q =

‖f · 1‖J,q 6 ‖f‖J,p‖1‖J,r = ‖f‖J,p. �

The following theorem can be obtained using standard techniques of functional

analysis.
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Theorem 4.6. Let p ∈ [1,∞) and let g : J → � be measurable. Then
‖g‖p = sup

{
1

|J |

∫

J

fg ; f ∈ C( � ), f = 0 on � \ J and ‖f‖p′ 6 1

}
.

In the following definition and in the remainder of the paper the variable x will

always be assumed to lie in the domain of function in question.

In the next definition we introduce the subspaces of D that will be central to the

rest of the paper.

Definition 4.7. For each p ∈ (0,∞) let

Sp = {f ∈ D ; lim
x→y

‖f − f(y)‖x,y,p = 0 for each y ∈ I}

and

Tp = {f ∈ D ; lim sup
x→y

‖f‖x,y,p <∞ for each y ∈ I}.

For each p ∈ [0,∞) let

Sp = {f ∈ D ; for each y ∈ I there is a q ∈ (p,∞) with lim
x→y

‖f − f(y)‖x,y,q = 0}

and let

T p = {f ∈ D ; for each y ∈ I there is a q ∈ (p,∞) with lim sup
x→y

‖f‖x,y,q <∞}.

For each p ∈ (0,∞] let Sp =
⋂

q∈(0,p)

Sq and let T p =
⋂

q∈(0,p)

Tp. Finally, let S0 =

D ∩ Cap, T0 = D, S∞ = M(T1) and T∞ = bD.

The reader might think that a more logical choice for S∞ would be, C, the con-

tinuous functions on I and indeed from the interpretation given to ‖ · ‖J,p, such a

choice would seem to correspond to the case p = ∞. The definition of T∞ certainly

corresponds to the definition of Tp when p = ∞. However according to Corollary 3.6

M(C) = T1, but M(T1) contains discontinuous functions. The selection of M(T1)

for S∞ will be justified in Theorem 6.5.

Note that S1 is the class of all Lebesgue function. Moreover if f : I → � is
such that for each y ∈ I there is a q ∈ [1,∞) with lim

x→y
‖f − f(y)‖y,x,q = 0, then

by Proposition 4.5, q may be replaced by 1; that is, f is a Lebesgue function and

consequently f ∈ D. Thus the condition f ∈ D in the definition of Sp for p > 1 is

redundant. Also note that all of the classes introduced in Definition 4.7 are vector

spaces.

The proof of the next assertion uses Proposition 4.5 and standard arguments.
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Proposition 4.8. Let p1, p2 ∈ (0,∞) with p1 < p2. Then the following contain-

ments hold.

T∞ ⊂ T∞ ⊂ . . . ⊂ T p2 ⊂ Tp2 ⊂ T p2 ⊂ . . . ⊂ T p1 ⊂ Tp1 ⊂ T p1 ⊂ . . . ⊂ T 0 ⊂ T0

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

S∞ ⊂ . . . ⊂ Sp2 ⊂ Sp2 ⊂ Sp2 ⊂ . . . ⊂ Sp1 ⊂ Sp1 ⊂ Sp1 ⊂ . . . ⊂ S0 ⊂ S0.

The missing containments; namely, S∞ ⊂ S∞ and S∞ ⊂ T∞ are established in

Section 6. The first is part of Theorem 6.7 while the second can be found early in

the proof of Proposition 6.10.

The next lemma is used here and again in the proof of Theorem 6.12.

Lemma 4.9. Let h : (0, 1) → � be measurable with h(x) > 0 for each x ∈ (0, 1)

and let p ∈ (1,∞). Suppose lim apx→0+ h(x) = 0 and lim sup
x→0+

1
x

∫ x
0
hp < ∞. Then

lim
x→0+

1
x

∫ x
0 h = 0.

��� �!�#"
. Let ε > 0. Set ϕ = min{h, 1

ε}. If h(x) >
1
ε , then ε

p−1hp(x) > h(x). So
1
x

∫ x
0 h 6 1

x

∫ x
0 ϕ 6 εp−1 1

x

∫ x
0 h

p. Since ϕ is bounded and since lim apx→0+ϕ(x) = 0,

we have lim
x→0+

1
x

∫ x
0
ϕ = 0. Consequently lim sup

x→0+

1
x

∫ x
0
h 6 εp−1 lim sup

x→0+

1
x

∫ x
0
hp from

which the desired conclusion follows at once. �

The following two assertions are used frequently in Section 7.

Proposition 4.10. For p ∈ [0,∞), Sp = T p∩Cap. For p ∈ (0,∞], Sp = T p∩Cap.

��� �!�#"
. By Proposition 4.8 for p ∈ [0,∞), Sp ⊂ T p ∩ Cap and for p ∈ (0,∞],

Sp ⊂ T p ∩ Cap. Now let f ∈ T p ∩ Cap and let y ∈ I . By definition there is an

r ∈ (p,∞) such that lim sup
x→y

‖f‖y,x,r <∞. By Lemma 4.2 if p < 1 or by the triangle

inequality if 1 6 p, lim sup
x→y

‖f − f(y)‖y,x,r <∞. Let r1 ∈ (p, r). Then by Lemma 4.9,

lim
x→y

‖f − f(y)‖y,x,r1 = 0. Thus by definition f ∈ Sp. Then T p ∩ Cap ⊂ Sp. The

remaining containment is proved similarly. �

The assertion obtained from Proposition 4.10 by omitting the underlines (or

overlines) is false. It is standard to construct a function f : [0, 1] → � , contin-
uous on (0, 1], with f(0) = 0 which is approximately continuous at 0 such that

lim
x→0+

1
x

∫ x
0
f = 0 but lim

x→0+

1
x

∫ x
0
|f | = 1. So f ∈ (T1 ∩ Cap) \ S1.
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Theorem 4.11. Let p, q ∈ [0,∞] with q 6 p and define r by 1
p + 1

r = 1
q .

(i) If p <∞, if f ∈ Sp and if g ∈ Tr ∩ Cap, then fg ∈ Sq.

(ii) If p <∞, if f ∈ Sp and if g ∈ Sr, then fg ∈ Sq .

(iii) If f ∈ Sp and if g ∈ Sr, then fg ∈ Sq.��� �!�#"��#"324.�5
. Let y ∈ I and write

fg − f(y)g(y) = (f − f(y))g + f(y)(g − g(y)).

By Lemma 4.4

lim
x→y

‖(f − f(y))g‖x,y,q 6 lim
x→y

‖f − f(y)‖x,y,p lim sup
x→y

‖g‖x,y,r = 0.

The second term is dealt with in two cases. First assume p = q. Then r = ∞

and hence g ∈ bCap. Clearly lim
x→y

‖f(y)(g − g(y))‖x,y,q = 0. Now assume q < p.

Apply Lemma 4.9 with h(x) = |g(y + x) − g(y)|q and with exponent r
q to obtain

lim
x→y

‖(g − g(y))‖x,y,r = 0. Thus lim
x→y

‖f(y)(g − g(y))‖x,y,q = 0.

��� �!�#"��#"324./.�5
. As above write

fg − f(y)g(y) = (f − f(y))g + f(y)(g − g(y)).

Since f ∈ Sp, there is a t ∈ (p,∞) such that lim
x→y

‖f − f(y)‖x,y,t = 0. Because

1
t + 1

r <
1
p + 1

r = 1
q , there is a v < r such that 1

t + 1
v = 1

u < 1
p + 1

r = 1
q . Since

g ∈ Sr, lim
x→y

‖g − g(y)‖x,y,v = 0. As in the proof of (i), with p, r, q replaced by t, v, u

respectively, lim
x→y

‖fg − f(y)g(y)‖x,y,u = 0. Because u > q, fg ∈ Sq.

��� �!�#"6�#"728././.�5
. It is shown that (ii) implies (iii). Let f ∈ Sp and let g ∈ Sr.

Choose u < q. Then 1
u >

1
q = 1

p + 1
r . There are t < p and v < r such that 1

t + 1
v = 1

u .

Since f ∈ Sp, f ∈ St and because g ∈ Sr, g ∈ Sv. By (ii) with p, q, r replaced by

t, u, v respectively, fg ∈ Su ⊂ Su. By definition fg ∈ Sq . �

The restriction p <∞ is essential for (i) while (ii) makes no sense for p = ∞.

Corollary 4.12. Let p, q and r be as in Theorem 4.11 with p < ∞. Suppose

f ∈ Sp and g ∈ Sr. Then fg ∈ Sq.��� �!�#"
. Because g ∈ Sr, by Proposition 4.8, g ∈ Tr ∩ Cap. Now apply Theo-

rem 4.11 (i). �
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Corollary 4.13. The space S∞ is an algebra.��� �!�#"
. As was already noted, S∞ is a vector space. Let f, g ∈ S∞ and let

q ∈ (1,∞). Then f, g ∈ S2q and by Corollary 4.12, fg ∈ Sq . By definition of S∞,

fg ∈ S∞. �

The remainder of this section is devoted to characterizing the algebra S∞ from

which it is concluded that S∞ is the largest algebra contained in D. We begin by

stating two results that can be found elsewhere.

Lemma 4.14. Let f ∈ D. Suppose there is a strictly convex ϕ : � → � such
that the composition ϕ ◦ f ∈ D. Then f ∈ S1.

For the proof see [6] Lemma 4.4, page 811.

Lemma 4.15. Let f, g ∈ Cap with |g| 6 f ∈ D. Then g ∈ S1.

For the proof see [5], 1.8, page 121.

Lemma 4.16. Let x, y ∈ [0,∞) and let p ∈ (1,∞). Then

(i) (x+ y)p 6 2p max{xp, yp}

(ii) |xp − yp| 6 2p max{|x− y|yp−1, |x− y|p}.

��� �!�#"
. Assertion (i) is obvious. In fact it holds for p ∈ [0,∞). To prove (ii) let

ϕ(t) =

{
tp−yp

t−y if t ∈ [0,∞) \ {y}

ptp−1 if t = y.

Since the function tp is strictly convex, ϕ is an increasing function. Thus if t 6 2y,

then |tp − yp| 6 |t− y|ϕ(2y) 6 |t− y|2pyp−1. If t > 2y, then t < 2(t− y) and hence

tp − yp 6 tp 6 2p(t− y)p. �

Proposition 4.17. Let p ∈ (1,∞) and let f ∈ Sp. Then |f |p ∈ S1.��� �!�#"
. Let y ∈ I and set g = |f |p. By Lemma 4.16 (ii),

|g − g(y)| 6 2p max{|f − f(y)||f(y)|p−1, |f − f(y)|p}.

Since p > 1, Proposition 4.5, implies lim
x→y

‖f − f(y)‖x,y,1 = 0. It then follows easily

that lim
x→y

‖g − g(y)‖y,x,1 = 0. �

195



Proposition 4.18. Let p ∈ (1,∞), let f ∈ Cap and let |f |
p ∈ D. Then f ∈ Sp.

��� �!�#"
. Let y ∈ I and set g = |f − f(y)|p. By Lemma 4.16 (i),

g 6 2p(|f |p + |f(y)|p).

By Lemma 4.15, g ∈ S1 ⊂ D, so that lim
x→y

‖f − f(y)‖y,x,p = g(y) = 0. �

Proposition 4.19. Let p ∈ (1,∞). Then f ∈ Sp if and only if f, |f |
p ∈ D.

��� �!�#"
. Let f ∈ Sp. By Proposition 4.17, |f |

p ∈ S1 ⊂ D. By Proposition 4.8,

f ∈ S1 ⊂ D.

Suppose f, |f |p ∈ D. By Lemma 4.14, f ∈ S1 ⊂ Cap and by Proposition 4.18,

f ∈ Sp. �

The above assertion for p = 1 is false. For example take

f(x) =

{
1 + sin 1

x if x 6= 0

1 if x = 0.

Then |f | = f ∈ D but f 6∈ S1.

Proposition 4.20. Let n ∈ � with n > 1, let p ∈ [n,∞) and let f ∈ Sp. Then

fn ∈ S1.

��� �!�#"
. Since Sp ⊂ Cap, f ∈ Cap and hence f

n ∈ Cap. Moreover |f
n| 6 1+ |f |p.

By Proposition 4.17, |f |p ∈ S1 ⊂ D and hence Lemma 4.15 implies fn ∈ S1. �

Theorem 4.21. S∞ = {f ; fn ∈ D for each n ∈ � }.
��� �!�#"

. By Corollary 4.13, S∞ is an algebra and hence S∞ ⊂ {f : fn ∈

D for each n ∈ � }. Suppose fn ∈ D for each n ∈ � and let p ∈ (1,∞). Choose

n ∈ � so that 2n > p. Then f ∈ D and |f |2n = f2n ∈ D. By Proposition 4.19,

f ∈ S2n. Since 2n > p, S2n ⊂ Sp. Thus f ∈ Sp completing the proof. �

The final result of this section is an immediate consequence of the preceding the-

orem.
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Theorem 4.22. Let A ⊂ D be an algebra. Then A ⊂ S∞.

5. Preliminary results

In this section we present the assertions that are used in Section 6 to find M(X)

where X is any of the spaces introduced in the previous section. In addition, other

resutls are proved that are employed in Section 7 to find M(X,Y ) where X and Y

are any of the same subpaces of D. We begin with some technical lemmas whose

proofs depend on the propositions of Section 2.

Lemma 5.1. Let J = [a, b] ⊂ � , let g : J → � be summable, let α ∈ (0,∞) with

|
∫
L
g| < α for each subinterval L ⊂ J , and let m ∈ � . Then there is an f ∈ C∞ such

that |f | ∈ C∞, f = 0 on � \ J , |f | 6 1 on J ,
∫
J f = 0, |

∫ x
a f | 6

|J|
m for each x ∈ J

and
∫
J
fg > 1

2 (
∫
J
|g| −mα).��� �!�#"

. For each k = 0, 1, 2, . . . ,m let xk = a+ k|J|
m and let Jk = [xk−1, xk ] for

k = 1, . . . ,m. By Proposition 2.12 applied to each Jk with Q =
∫
Jk

|g|+ |
∫
Jk
g| − α,

there is a function fk ∈ C∞ (the f2 of Proposition 2.12) such that |fk| ∈ C∞, fk = 0

on � \ Jk, |fk| 6 1 on � , ∫
Jk
fk = 0 and

∫
Jk
fkg >

1
2 (

∫
Jk

|g| − α). It is easy to see

that f =
m∑
k=1

fk is the desired function. �

Lemma 5.2. Let J = [a, b] ⊂ � , let g : J → � be integrable with ∫
J |g| = ∞ and

let ε, T ∈ (0,∞). Then there is an f ∈ C∞ such that |f | ∈ C∞, f = 0 on � \ J ,

|f | 6 1 on J ,
∫
J f = 0, |

∫ x
a f | < ε for each x ∈ J and

∫
J fg > P .��� �!�#"

. Let m ∈ � with m > |J|
ε . Define xk and Jk as in the preceding proof.

There is an ` ∈ {1, 2, . . . ,m} such that
∫
J`
|g| = ∞. Applying Proposition 2.12 to

J` with Q = 2T + |
∫
J`
g| we obtain an f ∈ C∞ (again the f2 of Proposition 2.12)

such that |f | ∈ C∞, f = 0 on � \ J`, |f | 6 1 on J ,
∫
J
f = 0 and

∫
J
fg > T . Clearly

|
∫ x
a f | 6

|J|
m < ε for each x ∈ J. �

Proposition 5.3. Let g : (0, 1) → � be a derivative with lim sup
x→0+

Var(x, 2x, g)

= ∞. Then there is an f ∈ C∞( � + ) such that lim
x→0+

1
x

∫ x
0
f = 0, lim

x→0+

1
x

∫ x
0
|f |p = 0

for each p ∈ (0, 1) but lim
x→0+

1
x

∫ x
0
fg = 0 doesn’t hold.

��� �!�#"
. For each k ∈ � there is an xk ∈ (0, 1) with 2xk+1 < xk and Var(Jk, g) >

k+ 1 where Jk = [xk, 2xk]. For each k ∈ � set pk = 1− 1
k+1 . Let k ∈ � . Then there

is a partition xk = t0 < t1 < . . . < t` = 2xk of [xk , 2xk] such that
∑̀
j=1

|g(ti) − g(ti−1)|
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> k+1. By Proposition 2.10 there are ϕj ∈ C∞, such that, setting Lj = [tj−1, tj ], we

have ϕj = 0 on � \ Lj ,
∫
Lj
ϕj = 0,

∣∣ ∫ x
0 ϕj

∣∣ 6 1 for each x ∈ (0, 1],
∫
Lj

∣∣ϕj
∣∣pk

6
xk

`

and
∣∣ ∫
Lj
ϕjg

∣∣ >
∣∣g(tj) − g(tj−1)

∣∣ − 1
` . Set σj = sgn

( ∫
Lj
ϕjg

)
and fk =

∑̀
j=1

σjϕj .

Then fk ∈ C∞, fk = 0 on � \ Jk,
∫
Jk
fk = 0,

∣∣ ∫ x
0 fk

∣∣ 6 1 for each x ∈ (0, 1] and∫
Jk

∣∣fk
∣∣pk < xk . Consequently for each k ∈ �

(5) ‖fk‖Jk,pk
< 1 and

∫

Jk

fkg > k.

Set f =
∞∑
k=1

xk
fk

k and let p ∈ (0, 1). There is an m ∈ � such that pm > p. Let

n ∈ � with n > m and let x ∈ (xn, xn−1]. Then
∫ x
0
|f |p 6

∞∑
k=n

∫
Jk

|f |p. Let k > n.

Then p < pk, ‖fk‖Jk,p 6 ‖fk‖Jk,pk
< 1 and hence 1

xk

∫
Jk

|fk|
p < 1. By definition

of f,
∫
Jk

|f |p = (xk

k )p
∫
Jk

|fk|
p. Since k > n and since xk < 1,

∫
Jk

|f |p < 1
np |Jk|.

Therefore
∫ x
0
|f |p < 1

np

∞∑
k=n

|Jk| <
2x
np . Thus lim

x→0+

1
x

∫ x
0
|f |p = 0. Using |

∫ x
0
fk| 6 1 a

similar argument proves that lim
x→0+

1
x

∫ x
0
f = 0. However by (5) we have

∫
Jk
fg > xk

for each k ∈ � so that lim sup
x→0+

1
x

∫ x
0
fg > 1 and hence lim

x→0+

1
x

∫ x
0
fg = 0 can’t hold.

�

Proposition 5.4. Let g : (0, 1) → � be a derivative with lim sup
x→0+

g(x) = ∞ and

let p ∈ [1,∞). Then there is an f ∈ (C∞( � + ))+ such that lim
x→0+

‖f‖0,x,p = 0,

lim sup
x→0+

‖fg‖0,x,p = ∞ but lim
x→0+

1
x

∫ x
0 fg = 0 doesn’t hold.

��� �!�#"
. Let a0 = 1. For each n ∈ � there is an an ∈ (0, 1) such that

2an < an−1 and g(an) > n2. Because g is the derivative of its indefinite inte-

gral, for each n ∈ � there is a bn ∈ (an, a2n) such that, setting Jn = [an, bn],

yields
∫
Jn
g > n2|Jn|. Let vn = ( an

n|Jn| )
1/p and set Ln = [an, an−1]. It is

easy to construct a function f ∈ (C∞( � + ))+ such that f = vn on Jn (so

that
∫
Jn
fp = vpn|Jn|) and

∫
Ln
fp < 2an

n . Let x ∈ Ln. Because an < 1
2k ,

∫ x
0 f

p 6
∞∑
k=n

∫
Lk
fp < 2

n

∞∑
k=n

ak < 4an

n < 4 xn . Thus lim
x→0+

‖f‖0,x,p = 0. Let n ∈ � .
Then 1

|Jn|

∫
Jn

|g|p = ‖g‖pJn,p
> ‖g‖pJn,1

> ( 1
|Jn|

∫
Jn
g)p > n2p. Hence

∫ 2an

0

|fg|p >

∫

Jn

|fg|p = vpn

∫

Jn

|g|p > vpn|Jn|n
2p = n2p−1an.
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Consequently lim sup
x→0+

‖fg‖0,x,p = ∞. If p = 1, then also
∫
Jn
fg > vnn

2|Jn| = nan

which together with 1 < bn

an
< 2 implies that both lim

n→∞

1
an

∫ an

0
fg = 0 and

lim
n→∞

1
bn

∫ bn

0
fg = 0 can’t hold. Thus lim

x→0+

1
x

∫ x
0
fg = 0 can’t hold. �

Proposition 5.5. Let g : (0, 1) → � with lim
x→0+

1
x

∫ x
0
g = 0 and suppose that

lim
x→0+

1
x

∫ x
0
fg = 0 for each f ∈ bC∞( � + ) satisfying lim

x→0+

1
x

∫ x
0
f = 0. Then we have

lim
x→0+

1
x

∫ x
0
|g| = 0.

��� �!�#"
. There is a δ ∈ � + such that

∫ δ
0
g exists. For each n ∈ � set xn = δ

2n and

Jn = [xn, 2xn] = [xn, xn−1]. For each n ∈ � , there is an ηn > 0 with |
∫ x
0 g| < ηnx

for each x ∈ Jn such that lim
n→∞

ηn = 0. For each n ∈ � choose mn ∈ � such that
lim
n→∞

mn = ∞ and lim
n→∞

ηnmn = 0. Let n ∈ � . If ∫
Jn

|g| = ∞, then by Lemma 5.2

there is an fn ∈ C∞ such that fn = 0 on � \ Jn,
∫ $
fn = 0, |

∫ x
xn
fn| <

xn

mn
for

each x ∈ Jn and
∫
Jn
fng > 1. If

∫
Jn

|g| < ∞, then by Lemma 5.1 with α = 4ηnxn
and m = mn, there is an f ∈ C∞ satisfying all of the above properties except∫
Jn
fng >

1
2

∫
Jn

|g|−2mnηnxn. Put f =
∞∑
n=1

fn on � + . Clearly f ∈ bC∞( � + ). Using

an argument similar to the one employed in the proof of Proposition 5.3 it can be

shown that lim
x→0+

1
x

∫ x
0 f = 0. By assumption lim

x→0+

1
x

∫ x
0 fg = 0. Hence

∫
Jn
fng > 1

can hold for only finitely many n ∈ � ; i.e., ∫
Jn

|g| = ∞ holds for only finitely many

n ∈ � . Thus there is an N0 ∈ � such that n > N0 implies
∫
Jn

|g| < ∞ and, by the

choice of fn in that case,
∫
Jn

|g| < 2
∫
Jn
fg + 4mnηnxn. For x ∈ Jn,

1

x

∫ x

0

|g| 6
1

xn

∑

k>n

∫

Jk

|g| 6
1

xn

(
2

∫ 2xn

0

fg + 8 sup{mkηk ; k > n}xn

)

from which lim
x→0+

1
x

∫ x
0
|g| = 0 follows. �

Proposition 5.6. Let g ∈ D with g(0) 6= 0 and let p ∈ [0,∞). Then there is an

f ∈ C( � + ) such that lim
x→0+

1
x

∫ x
0
f = 0, lim apx→0+ f(0) = 0, lim sup

x→0+

1
x

∫ x
0
|fg|q = ∞

for each q > p and if p > 0, then lim
x→0+

1
x

∫ x
0 |f |p = 0.

��� �!�#"
. We may suppose that g(0) > 1. Let S = {x ; g(x) > 1}. Since g ∈ D,

|S ∩ (0, δ)| > 0 for each δ ∈ (0, 1) and hence for each n ∈ � there is an xn ∈ (0, 1)

such that xn is a point of density of S and 2xn+1 < xn. For each n ∈ � there is a
yn ∈ (xn, 2xn) such that if Jn = (xn, yn), |Jn \ S| < |Jn|

3 and |Jn| <
xn

nnp+1 . Let vn

satisfy |Jn|v
p+ 1

n
n = xn. Then n

np+1 < v
p+ 1

n
n , or nn < vn.

199



For each n ∈ � there is an fn ∈ C( � ) such that fn = 0 on � \ Jn, |fn| 6 vn on

Jn,
∫
Jn
fn = 0, 0 6

∫ x
0 fn 6

xn

n for each x ∈ I and |Bn| <
|Jn|
3 where Bn = {x ∈

Jn ; |fn(x)| < vn}. Set f =
∞∑
n=1

fn on � + . Clearly f ∈ C( � + ). For x ∈ [xn, xn−1),
∫ x
0 f =

∫ x
0 fn 6 xn

n < x
n . Because 0 6

∫ x
0 fn, lim

x→0+

1
x

∫ x
0 f = 0. Set pn = p + 2

n and

An = (S ∩ Jn) \Bn. Then |An| >
|Jn|
3 .

Let q > p. There is an n ∈ � with pn < q. For any such n

∫ yn

0

|fg|pn >

∫

An

|fg|pn > vpn
n |An| > vpn

n

|Jn|

3
=
xn
3
v
pn−(p+ 1

n )
n >

ynv
1/n
n

6
>
nyn
6
.

Hence ‖fg‖0,yn,q > ‖fg‖0,yn,pn > (n6 )1/pn . Because 1
pn

> 2 for n > 2, we have

lim inf
x→0+

‖fg‖0,x,q = ∞.

Let V =
∞⋃
n=1

Jn. Since |Jn|n
np+1 < xn, p > 0 implies |Jn| <

xn

n . Let x ∈

(xn, xn−1]. Then |V ∩ (0, x)| 6
∞∑
k=n

|Jk| <
1
n

∞∑
k=n

xk <
2xn

n < 2x
n . It follows that

lim apx→0+ f(x) = 0.

Finally assume p > 0. If x ∈ (xn, xn−1], then

∫ x

0

|f |p 6

∞∑

k=n

vpk |Jk| =
∞∑

k=n

xk
1

k
6

1

n
2xn 6

2

n
x.

Thus, lim
x→0+

1
x

∫ x
0 |f |p = 0. �

Proposition 5.7. Let g be as in Proposition 5.6 and let p ∈ (0,∞). There is an

f ∈ C( � + ) such that lim
x→0+

1
x

∫ x
0 f = 0, lim sup

x→0+

1
x

∫ x
0 |fg|p = ∞ and lim

x→0+

1
x

∫ x
0 |f |q =

0 for each q ∈ (0, p).��� �!�#"
. As before assume g(0) > 1. Let S, xn, yn and Jn be as before. For

n 6 1
p set wn = vn and for n > 1

p define wn by |Jn|w
p− 1

n
n = xn. In either case

wn > vn > nn. For each n ∈ � there is an fn ∈ C( � ) such that fn = 0 on � \ Jn,

|fn| 6 wn on Jn,
∫
Jn
fn = 0, 0 6

∫ x
0
fn 6 xn

n for each x and |B∗
n| <

|Jn|
3 where

B∗
n = {x ∈ Jn ; |fn(x)| < wn}. Set f =

∞∑
n=1

fn on � + . Clearly f ∈ C( � + ) and a

now-familiar argument shows that lim
x→0+

1
x

∫ x
0
f = 0.

Let A∗
n = (S ∩ Jn) \B

∗
n. Then |A∗

n| >
1
3 |Jn| and for n >

1
p ,

∫ yn

0

|fg|p >

∫

A∗

n

|fg|p > wpn|A
∗
n| > w

p− 1
n

n |Jn|
1

3
w1/n
n >

1

6
nyn.

Hence lim sup
x→0+

1
x

∫ x
0 |fg|p = ∞.
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Let q ∈ (0, p) and set qn = p− 2
n . There is an m ∈ � with m > 1

p such that qm > q.

Then n > m implies ‖fn‖Jn,q 6 ‖fn‖Jn,qn 6 wn. Hence
∫
Jn

|f |q = |Jn|‖fn‖
q
Jn,q

6

|Jn|w
q
n < |Jn|w

qn
n = |Jn|

wp−1/n
n

w
1/n
n

< xn

n . Once again it follows that lim
x→0+

1
x

∫ x
0
|f |q = 0.

�

Lemma 5.8. Let {an} be a decreasing sequence with lim
n→∞

an = 0 and for each

n ∈ � , let bn ∈ � + . Then there is an f ∈ (C( � + ))+ such that n ∈ � implies
f(an) = bn and lim

x→0+

1
x

∫ x
0 f

p = 0 for each p ∈ (0,∞).

��� �!�#"
. For each n ∈ � , set βn = max{bn,

2n

an
} and δn = e−βn . Choose

dn ∈ (0,min
{
δn,

an

2

}
) with an+1 + dn+1 < an − dn and set Jn = (an − dn, an + dn).

There is an f ∈ (C( � + ))+ such that for each n ∈ � , f(an ) = bn, f 6 bn on Jn

and f = 0 on � + \
∞⋃
n=1

Jn. Let p ∈ (0,∞) and set µ = max{xp+1e−x ; x ∈ (0,∞)}.

Then x ∈ (an − dn, an−1 − dn−1] implies
∫ x
0 f

p 6
∞∑
k=n

∫
Jk
fp 6

∞∑
k=n

2dkb
p
k. Note that

dk 6 δk 6
µ

βp+1

k

= µ 1
βk

1
βp

k
< µak

2k
1
bp

k
and x > 1

2an. Thus

∫ x

0

fp 6

∞∑

k=n

2µak
2k

< 2µan

∞∑

k=n

1

2k
=

4µan
2n

<
δµx

2n

from which again lim
x→0+

∫ x
0 f

p = 0 follows. �

Proposition 5.9. Let g be as in Propositions 5.6 and 5.7. Then there is an

f ∈ (C( � + ))+ such that lim
x→0+

1
x

∫ x
0 f

p = 0 for each p ∈ (0,∞) and lim sup
x→0+

|(fg)(x)|

= ∞.��� �!�#"
. Again assume g(0) > 1. There is a decreasing sequence {an} in (0, 1)

with lim
n→∞

an = 0 such that n ∈ � implies g(an) > 1. Now apply Lemma 5.8 with

bn = n. �

The next series of results leads to the two assertions at the end of this section

which will provide the basis for the proofs of two of the major theorems in the next

section.

Lemma 5.10. Let g : (0, 1) → � be measurable and nonnegative, let A ∈ (0,∞)

and let a ∈ (0, 1]. Suppose
∫ a
0
g > aA. Then there is b ∈

(
0, a2

]
such that

∫ 2b

b
g > bA.��� �!�#"

. For each n ∈ N set an = a
2n . If

∫ 2an

an
g 6 anA for each n ∈ � ,

then
∫ a
0 g 6 A

∞∑
n=1

an = Aa which is a contradiction. So there is an n ∈ � with
∫ 2an

an
g > anA and we let b = an. �
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Proposition 5.11. For each n ∈ � let rn ∈ (0,∞) and let g : (0, 1) → � be
measurable such that lim sup

x→0+

‖g‖0,x,rn = ∞ for each n ∈ � . Then for each n ∈ �
there is an an ∈ (0, 1] such that 2an+1 < an and ‖g‖an,2an,rn > n2 for each n ∈ � .��� �!�#"

. Set a0 = 1. Let n ∈ � and suppose an−1 has been defined. Since

lim sup
x→0+

‖g‖0,x,rn = ∞, there is a c ∈ (0, an−1) such that
1
c

∫ c
0
|g|rn > n2rn . By

Lemma 5.10, there is an an ∈
(
0, c2

]
such that 1

an

∫ 2an

an
|g|rn > n2rn which is the

desired result. �

Theorem 5.12. For each n ∈ � , let sn ∈ (1,∞) with s1 6 s2 6 . . . and let

rn = s′n. Let g : (0, 1) → � be integrable such that lim sup
x→0+

‖g‖0,x,rn = ∞ for each

n ∈ � . Then there is an f ∈ C( � + ) such that lim
x→0+

‖f‖0,x,sn = 0 for each n ∈ � and
lim sup
x→0+

1
x

∫ x
0
fg = +∞.

��� �!�#"
. For each n let an satisfy the conclusion of Proposition 5.11 and set

Jn = [an, 2an]. Let n ∈ � . Since ‖g‖Jn,rn > n2, by Theorem 4.6 there is an

fn ∈ C( � ) with fn = 0 on � \ Jn such that ‖fn‖Jn,sn 6 1 and
∫
Jn
fng > ann

2.

Set f =
∞∑
n=1

fn

n . Let n ∈ � . For x ∈ (0, an] choose k ∈ � so that x ∈ (ak, ak−1].

Then k > n. So for m > k Proposition 4.5 implies ‖fm‖Jm,sn 6 ‖fm‖Jm,sm 6 1.

Consequently
∫
Jm

|fm|sn 6 am. Thus

∫ x

0

|f |sn 6

∞∑

m=k

∫

Jm

∣∣∣∣
fm
m

∣∣∣∣
sn

6
1

ksn

∞∑

m=k

∫

Jm

|fm|
sn 6

1

ksn

∞∑

m=k

am 6
2ak
ksn

<
2x

ksn
.

Thus lim
x→0+

1
x

∫ x
0 |f |sn = 0. On the other hand for x = 2am,

1

x

∫ x

0

fg >
1

2am

∫

Jm

fg >
1

2am

amm
2

m
=
m

2

and hence lim sup
x→0+

1
x

∫ x
0 fg = +∞. �

Theorem 5.13. For each n ∈ � , let sn ∈ (0,∞) and let t ∈ (0,∞) with t <

s1 6 s2 6 . . . . For each n ∈ � define rn by 1
sn

+ 1
rn

= 1
t . Suppose g : (0, 1) → � is

measurable with lim sup
x→0+

‖g‖0,x,rn = ∞ for each n ∈ � . Then there is an f ∈ C( � + )

such that lim sup
x→0+

‖fg‖0,x,t = +∞ and lim
x→0+

‖f‖0,x,sn = 0 for each n ∈ � .
��� �!�#"

. As before let an satisfy the conclusion of Proposition 5.11 and set Jn =

[an, 2an]. Let n ∈ � . Set p = rn

t . Then p
′ = sn

t . Since ‖|g|
t‖Jn,p = ‖g‖tJn,rn

> n2t,
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by Theorem 4.6 there is an fn = C( � ) (fn = |f |
1
t ) with fn = 0 on � \ Jn such that

‖fn‖Jn,sn = ‖ |fn|
t‖

1
t

Jn,p′
6 1 and

∫
Jn

|fng|
t > ann

2. Set f =
∞∑
n=1

fn

n . Proceeding as

in the previous proof it follows that lim
x→0+

1
x

∫ x
0
|f |sn = 0 for each n ∈ � . Also as

before for x = 2am we have
1
x

∫ x
0
|fg|t > m

2 and hence lim sup
x→0+

1
x

∫ x
0
fg = +∞. �

Theorem 5.14. For each n ∈ � let s ∈ (0,∞) and let tn ∈ (s,∞) with t1 6

t2 6 . . . < s. For each n ∈ � define rn by 1
s + 1

rn
= 1

tn
. Suppose g : (0, 1) → � is

measurable and lim sup
x→0+

‖g‖0,x,rn = +∞ for each n ∈ � . Then there is an f ∈ C( � + )

such that lim
x→0+

‖f‖0,x,s = 0 and lim sup
x→0+

‖fg‖0,x,tn = +∞ for each n ∈ � .
��� �!�#"

. Proceed as in the proof of Theorem 5.13. �

6. Multipliers of various spaces

The main results of this paper are contained in the next two sections. In this

section we find M(X) where X is any of the spaces introduced in Section 4: Sp, Sp,

Sp, T p, Tp, or T p with the appropriate limitations on p. We begin with M(X) for

any X with S1 ⊂ X .

Definition 6.1. Let

W = {g ∈ D : lim sup
h→0

Var(x + h, x+ 2h, g) <∞ for each x ∈ I}.

The space W is what is referred to in [2] as the space of functions of distant

bounded variation. It was shown there that M(D) = W . First we present a new

proof of that result and somewhat more, beginning with two lemmas.

Lemma 6.2. Let δ, C ∈ (0,∞) with δ < 1 and let g : (0, 1) → � be integrable
such that lim

x→0+

1
x

∫ x
0
g = C . For each n ∈ � set zn = 2−nδ and Jn = [zn, 2zn]. Let

V = lim sup
n→∞

osc(Jn, g). Then

C − V 6 lim inf
x→0+

g(x) 6 lim sup
x→0+

g(x) 6 C + V.

��� �!�#"
. Let x ∈ (0, 1). Then there is an n ∈ � such that x ∈ Jn. Clearly

g 6 g(x) + osc(Jn, g) on Jn. Hence g(x) > 1
zn

∫
Jn
g − osc(Jn, g). Since lim

n→∞

1
zn

∫
Jn
g

= C, C − V 6 lim inf
x→0+

g(x). The other inequality has a similar proof. �
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Lemma 6.3. Let f, g : (0, 1) → � be measurable such that lim
x→0+

1
x

∫ x
0
f = 0,

lim sup
x→0+

|g(x)| <∞ and lim sup
x→0+

Var(x, 2x, g) <∞. Then lim
x→0+

1
x

∫ x
0
fg = 0.

��� �!�#"
. Let ε0 ∈ (0,∞). By assumption there are δ0, B, C ∈ (0,∞) such that

|g(x)| < B and Var(x, 2x, g) < C for each x ∈ (0, δ0). Put ε = ε0
8(2B+C) . There

is a δ ∈ (0, δ0) such that |
∫ x
0 f | < εx for each x ∈ (0, δ]. Let x0 ∈ (0, δ]. We

first must show that fg is integrable on [0, x0] a task made more difficult because

we are dealing with the Denjoy-Perron integral. For each n ∈ � let xn = 2−nx0.

For n ∈ � and for x ∈ [xn, 2xn] = [xn, xn−1] let G(x) = Var(xn, x, g), g1(x) =
1
2 (G(x) + g(x) − g(xn)) and g2(x) = 1

2 (G(x) − g(x) + g(xn)). Then g1 and g2 are

nondecreasing on [xn, 2xn] with g1(xn) = g2(xn) = 0. So fgi is integrable on [xn, 2xn]

for i = 1, 2 and consequently fg is integable on [xn, 2xn]. Moreover by Theorem 2.8
∣∣∣∣
∫ 2xn

xn

fg

∣∣∣∣ =

∣∣∣∣
∫ 2xn

xn

f(g1 − g2) 6

∣∣∣∣
∫ 2xn

xn

fg1

∣∣∣∣ +

∣∣∣∣
∫ 2xn

xn

fg2

∣∣∣∣ < 4(C + 2B)εxn.

Hence for any n ∈ �
∣∣∣∣
∫ x0

xn

fg

∣∣∣∣ =

∣∣∣∣
n∑

m=1

∫ 2xm

xm

fg

∣∣∣∣ 6

n∑

m=1

∣∣∣∣
∫ 2xm

xm

fg

∣∣∣∣

< (C + 2B)4ε

n∑

m=1

xm < (C + 2B)4εx02 = ε0x0.

By the theory of the Denjoy-Perron integral,
∫ δ
0 fg exists and |

∫ δ
0 fg| 6 ε0δ. �

Theorem 6.4. Let S1 ⊂ X ⊂ D. Then M(X) = M(D) = W.��� �!�#"
. By Proposition 2.3, M(D) ⊂M(X) ⊂M(S1). Consequently it suffices

to prove W ⊂ M(D) and M(S1) ⊂ W . To prove the former, first note that for

any interval J and any h : J → � we have osc(J, h) 6 Var(J, h). Consequently if

g ∈ W , then according to Lemma 6.2 g is bounded. Then Lemma 6.3 easily proves

that if g ∈ W and if f ∈ D, then fg ∈ D. For the second containment suppose

g ∈ D \W . We may assume lim sup
x→0+

Var(x, 2x, g) = ∞. By Proposition 5.3 there is

an f ∈ C∞( � + ) such that lim
x→0+

1
x

∫ x
0 f = 0, lim

x→0+

1
x

∫ x
0 |f |p = 0 for each p ∈ (0, 1)

but lim
x→0+

1
x

∫ x
0 fg = 0 doesn’t hold. The first two conditions imply f ∈ S1. The third

says fg 6∈ D. Thus g 6∈M(S1). �

By Proposition 4.8 for each p ∈ (0, 1) we have S1 ⊂ Sp ⊂ Sp ⊂ Sp and S1 ⊂ T p ⊂

Tp ⊂ T p. Also S1 ⊂ S0 ⊂ S0 and S1 ⊂ T 0 ⊂ T0. Thus for each of these spaces,

X , we have M(X) = W. We now deal with the remaining spaces. The next theorem

sets the pattern for the second major theorem of this section, Theorem 6.13.
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Theorem 6.5. M(S1) = T∞, M(T∞) = S1, M(S∞) = T1, M(T1) = S∞.

��� �!�#"
. It follows from Proposition 5.4 with p = 1 that M(S1) ⊂ T∞. That

every bounded derivative (that is, an element of T∞) is in M(S1) is easy and is left

to the reader.

Proposition 5.5 implies M(T∞) ⊂ S1 and again the opposite containment is easy.

By Corollary 3.6 with n = 0, M(C) = T1. By Proposition 2.7, T1 = M(C) =

M(M(M(C))) = M(M(T1)) = M(S∞). The last equality is just the definition of

S∞. �

9�:<;=+*� >
6.6. The relation M(S1) = T∞ is also proved in [5]. The equality

M(T∞) = S1 was stated without proof in [1].

Theorem 6.7. M(D) ⊂ S∞ ⊂ bCap ⊂ S∞.

��� �!�#"
. Since T1 ⊂ D, by Proposition 2.3 M(D) ⊂ M(T1) = S∞. Since

T∞ ∩ S1 ⊂ T1, Theorem 6.5 implies S∞ = M(T1) ⊂ M(S1) ∩M(T∞) = T∞ ∩ S1 =

bCap. It is easy to see that bCap ⊂ Sp for each p ∈ [0,∞). Thus bCap ⊂ S∞. �

9�:<;=+*� >
6.8. Let f ∈ M(D). Then by the preceding theorem f is approximately

continuous. Consequently f is continuous on any interval on which it is of bounded

variation. That M(D) = W implies that there are many such intervals. In fact it

implies that the union of all open intervals (a, b) ⊂ I such that f is continuous and

of bounded variation on each [c, d] with a < c < d < b is all of I except for a finite

set.

The next lemma is used here and extensively in Section 7.

Lemma 6.9. Let p, q ∈ (0,∞] with q 6 p. Define r ∈ (0,∞] by 1
p + 1

r = 1
q .

Suppose f, g, fg ∈ D.

(i) If f ∈ Tp and if g ∈ Tr, then fg ∈ Tq

(ii) If p <∞, if f ∈ T p and if g ∈ T r, then fg ∈ T q
(iii) If f ∈ T p and if g ∈ T r, then fg ∈ T q.

��� �!�#"
. (i) follows immediately from Lemma 4.4. For (ii) let y ∈ I . Since

f ∈ T p, there is a s ∈ (p,∞) such that lim sup
x→y

‖f‖x,y,s <∞. Since 1
s+ 1

r <
1
p+ 1

r = 1
q ,

there is q1 > q and r1 < r such that 1
s + 1

r1
= 1

q1
. By definition g ∈ Tr1 . Thus

Lemma 4.4 implies lim sup
x→y

‖fg‖x,y,q <∞. By definition fg ∈ T q . The proof of (iii)

is easy and hence is omitted. �
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Proposition 6.10. Let p ∈ [1,∞]. Suppose one of the following holds.

(i) f ∈ Sp and g ∈ Tp′ .

(ii) p > 1, f ∈ Sp and g ∈ T p′ .

(iii) p <∞, f ∈ Sp and g ∈ T p′ .

Then fg ∈ T1.

��� �!�#"
. If f ∈ S∞ and if g ∈ T1, then since S∞ = M(T1), fg ∈ D. Since S1 ⊂

T1, S∞ = M(T1) ⊂ M(S1) = T∞ by Theorem 6.5. (This inclusion is one of those

missing from Proposition 4.8.) Consequently f is bounded and since g ∈ T1, it follows

that fg ∈ T1. In each of the remaining cases it is easy to prove, using Lemma 4.4,

that for each y ∈ I , lim
x→y

‖(f − f(y))g‖x,y,1 = 0. Since fg = (f − f(y))g + f(y)g, it

follows that fg ∈ D. Now apply Lemma 6.9 with r = 1. �

Lemma 6.11. Let p ∈ [1,∞) and let f : � + → � be measurable. Suppose
lim sup
x→0+

1
x

∫ x
0
|f |p <∞. Then there is an h ∈ C∞( � + ) with lim

x→0+

1
x

∫ x
0
|f − h|p = 0.

��� �!�#"
. For each n ∈ � , let Jn = [2−n, 2−n+1]. For each n ∈ � with∫

Jn
|f |p < ∞ since p ∈ [1,∞), there is an hn ∈ C∞( � + ) such that hn = 0 on

� \ Jn and ‖f − hn‖Jn,p <
1
n . If

∫
Jn

|f |p = ∞, set hn = 0. Let h =
∞∑
n=1

hn. Since

lim sup
x→0+

1
x

∫ x
0
|f |p <∞, there is an m ∈ � such that ∫

Jn
|f |p < ∞ for each n > m.

Let n > m and let x ∈ Jn. Then

∫ x

0

|f − h|p 6

∞∑

k=n

∫

Jk

|f − hk|
p 6

∞∑

k=n

|Jk|

kp
6

∞∑

k=n

|Jk|

np
6

2x

np

from which the desired result follows immediately. �

Theorem 6.12. Let p ∈ [1,∞]. Then M(Sp) = Tp′ and M(Tp) = Sp′ .

��� �!�#"
. By Theorem 6.5 we may assume p ∈ (1,∞). Let g ∈ M(Sp). By

Theorem 5.12 with sn = p for each n ∈ � , g ∈ Tp′ . Hence M(Sp) ⊂ Tp′ . The

opposite containment follows from Proposition 6.10 (i).

Let g ∈ M(Tp). Since Tp ⊃ T∞ ∪ Sp, by Propositions 2.3 and 2.6 g ∈ M(T∞) ∩

M(Sp) = S1 ∩ M(Sp) ⊂ Cap ∩ Tp′ . Let y ∈ I , set g1 = g − g(y) and set f =

|g1|
p′−1 sgn g1. Since p(p

′ − 1) = p′, |f |p = |g1|
p′ . Thus

(6) lim sup
x→y

1

|x− y|

∫ x

y

|f |p = lim sup
x→y

1

|x− y|

∫ x

y

|g1|
p′ <∞.
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By Lemma 6.11 there is an h ∈ C∞( � \ {y}) such that

(7) lim
x→y

1

x− y

∫ x

y

|f − h|p = 0.

Let h(y) = 0. Then for each x ∈ I \{y} we have ‖h‖y,x,p 6 ‖h−f‖y,x,p+‖f‖y,x,p. By

(6) and (7) lim sup
x→y

1
|x−y|

∫ x
y |h|p <∞. It follows from (7) that lim apx→y(f −h)(x) =

0. Since g1 ∈ Cap and since g1(y) = 0, lim apx→y f(x) = 0. Thus lim apx→y h(x) = 0.

By Lemma 4.9, lim
x→y

1
x−y

∫ x
y |h| = 0 and consequently h ∈ D. Therefore h ∈ Tp. Since

g ∈M(Tp), hg1 ∈ D. Hence lim
x→y

1
x−y

∫ x
y hg1 = 0. Furthermore by (6) and (7) we have

lim
x→y

1

|x− y|

∫ x

y

|(f − h)g1| 6 lim
x→y

‖f − h‖x,y,p‖g1‖x,y,p′ = 0.

Thus

lim
x→y

1

x− y

∫ x

y

|g − g(y)|p
′

= lim
x→y

1

x− y

∫ x

y

fg1 = 0.

Therefore g ∈ Sp′ . Hence M(Tp) ⊂ Sp′ . Again the opposite containment follows

from Proposition 6.10 (i). �

Theorem 6.13. For p ∈ [1,∞), M(Sp) = T p′ and M(T p) = Sp′ . For p ∈ (1,∞],

M(Sp) = T p′ and M(T p) = Sp′ .��� �!�#"
. Assume p ∈ [1,∞). Let q′ ∈ (1, p′). Then q ∈ (p,∞). By Proposi-

tion 4.8 Sq ⊂ Sp. By Proposition 2.6 and Theorem 6.12, M(Sp) ⊂ M(Sq) = Tq′ .

Thus M(Sp) ⊂
⋂

q′∈(1,p′)

Tq′ = T p′ . That T p′ ⊂ M(Sp) follows from Proposition 6.10

(iii). Since T p ⊃ Sp ∪ T∞, by Proposition 2.6, Theorem 6.5, the above and Propo-

sition 4.10, M(T p) ⊂ M(Sp) ∩M(T∞) = T p′ ∩ S1 ⊂ T p′ ∩ Cap = Sp′ . By Proposi-

tion 6.10 (ii) Sp′ ⊂M(Tp).

Now assume p ∈ (1,∞] and let g ∈M(Sp). For each n ∈ � let pn ∈ (1, p) such that

lim
n→∞

pn = p. Then for each n ∈ � , p′n > p′. Let y ∈ I . By Theorem 5.12 it follows

that lim sup
x→y

‖g‖x,y,p′n <∞ for some n ∈ � . Hence g ∈ T p′ . So M(Sp) ⊂ T p′ . The

opposite containment follows from Proposition 6.10 (ii). The proof thatM(T p) = Sp′

is similar to that of M(T p) = Sp′ and is omitted. �

It is finally possible to fill in the final missing containment from Proposition 4.8.

Because T 1 ⊂ T1, by Proposition 2.3, S∞ = M(T1) ⊂M(T 1) = S∞.

This section is concluded with a theorem whose significance is explained in the

subsequent remark.
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Theorem 6.14. Let X ⊂ D. Then X ⊂ S2 if and only if X ⊂M(X).��� �!�#"
. If X ⊂ S2, then X ⊂ T2 = M(S2) ⊂ M(X). Let X ⊂ M(X) and let

f ∈ X . Then f2 ∈ D; so by Proposition 4.19 f ∈ S2. �9�:<;=+*� >
6.15. Let X ⊂ D. Using Proposition 4.18 as in the preceding proof it

is easy to see that M(X) ⊂ X implies M(X) ⊂ S2. However M(X) ⊂ S2 can hold

even if X does not contain the zero function in which caseM(X) ⊂ X is impossible.

At the same time the equality M(X) = X can never hold. For if there were such an

X , then by the previous theorem X ⊂ S2 and hence T2 = M(S2) ⊂M(X) = X ⊂ S2

which is false. (There are bounded derivatives; that is, elements of T∞ ⊂ T2 that

are not approximately continuous; that is, not in S0 ⊃ S2.)

7. Multipliers from one space to another

In this section we find the spaces of multipliers M(X,Y ) where X and Y are any

of the spaces of derivatives investigated in the previous three sections. To carry out

the campaign the following notation will be useful.'(�*),+-) ./�10
7.1. For p ∈ (0,∞) let

Sp = {Sp, Sp, Sp} and Tp = {Tp, Tp, T p}.

Also let

S0 = {S0, S0}, T0 = {T 0, T0}, S∞ = {S0, S∞} and T∞ = {T∞, T∞}.

Finally let S =
⋃

p∈[0,∞]

Sp and T =
⋃

p∈[0,∞]

Tp. Generic elements of S will be denoted

by S and S̃ while T and T̃ will denote generic elements of T . Also X and Y will

denote elements of S ∪ T .

The problem of determining M(X,Y ) is decomposed into four parts: M(T, S),

M(S, T ), M(T, T̃ ) and M(S, S̃). We take them up in that order.

Theorem 7.2. Let X,Y ∈ S ∪ T with T∞ ⊂ X and Y ⊂ S0. Then M(X,Y ) =

{0}.��� �!�#"
. Let g ∈ M(X,Y ) and let y ∈ I . Then there is an f ∈ T∞ = bD such

that f is not approximately continuous at y. By assumption fg ∈ Y ⊂ S0 = Cap.

It is easy to see that if g(y) 6= 0, then fg is not approximately continuous. Thus

g(y) = 0. �
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Theorem 7.3. Let p ∈ (0,∞]. Then M(Sp, Tp) = {0}.��� �!�#"
. Let p ∈ (0,∞), let g ∈ M(Sp, Tp) and let y ∈ I . Show g(y) = 0.

Suppose to the contrary that g(y) 6= 0. Then by Proposition 5.7 there is an f ∈ Sp

with fg 6∈ Tp contrary to g ∈M(Sp, Tp). Thus g(y) = 0. The case p = ∞ follow the

same procedure except using Proposition 5.9 in place of Proposition 5.7. �

Theorem 7.4. Let p ∈ [0,∞). Then M(Sp, T p) = {0}.��� �!�#"
. Proceed as in the proof of Theorem 7.3 using Proposition 5.6 in place

of Proposition 5.7. �

From Theorems 7.3 and 7.4 and Proposition 2.3 for X,Y ∈ S ∪ T if Sp ⊂ X and

Y ⊂ Tp for p ∈ (0,∞] or if Sp ⊂ X and Y ⊂ T p for p ∈ [0,∞), then M(X,Y ) = {0}.

It follows that all entries in the chart forM(S, T ) below the main diagonal are {0}. In

addition the corresponding conclusion holds for the charts forM(T, T̃ ) andM(S, S̃).

These entries are also denoted by leaving the corresponding space blank.

The next two assertions combine to complete the lower right hand corner of the

M(S, T ) chart.

Theorem 7.5. Let X ∈ S ∪ T . Then W = M(D) ⊂M(X,X).��� �!�#"
. Let g ∈ W . By Theorem 6.6, g ∈ bCap. Let f ∈ X . Then fg ∈ D.

If X = T0, then M(D) = M(D,D) = M(X,X) by choice of T0. If X = S0,

then fg ∈ D ∩ Cap = S0. Thus g ∈ M(S0, S0). Next assume p ∈ (0,∞] and

X = Tp. Let y ∈ I . By definition lim sup
x→y

‖f‖x,y,p <∞. Because ‖g‖∞ < ∞,

lim sup
x→y

‖fg‖x,y,p <∞. So g ∈ M(Tp, Tp). Similarly if X = T p and if y ∈ I , then by

definition there is q ∈ (0, p) with lim sup
x→y

‖f‖x,y,q <∞. Thus lim sup
x→y

‖fg‖x,y,q <∞.

So fg ∈ T p. It is just as easy to prove that M(D) ⊂M(T p, T p) for p ∈ [0,∞).

Again assume p ∈ (0,∞] but now assume X = Sp. Let f ∈ Sp and let y ∈ I . By

definition lim
x→y

‖f − f(y)‖x,y,p = 0. If p <∞, then

‖fg − f(y)g(y)‖x,y,p 6 ‖f − f(y)‖x,y,p‖g‖∞ + |f(y)|‖g − g(y)‖x,y,p

and lim
x→y

‖g − g(y)‖x,y,p = 0 because g ∈ bCap. For p = ∞, let f ∈ S∞. To show

that fg ∈ S∞ = M(T1), let h ∈ T1. By the previous case for X = T1, gh ∈ T1. So

f ∈ S∞ = M(T1) implies (fg)h ∈ T1. Thus fg ∈M(T1) = S∞.

Continuing with p ∈ (0,∞] let X = Sp, let f ∈ Sp and let y ∈ I . By definition

there is a q ∈ (0, p) with lim
x→y

‖f − f(y)‖x,y,q = 0. By the first argument of the pre-

ceding paragraph, lim
x→y

‖fg − f(y)g(y)‖x,y,q = 0. By definition fg ∈ Sp. Finally for

p ∈ [0,∞) the proof that M(D) ⊂M(Sp, Sp) is similar. �
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Theorem 7.6. Let X,Y ∈ S ∪ T with S1 ⊂ X ⊂ Y . Then M(X,Y ) =

M(D) = W .

��� �!�#"
. By Theorem 6.4, M(S1) = M(D) = W . So by Theorem 7.5 and by

Proposition 2.3

M(D) ⊂M(X,X) ⊂M(X,Y ) ⊂M(S1, D) = M(S1) = M(D).

�

As a consequence of Theorem 7.6. in the M(S, T ) chart all entries on and below

the S1 row, on and to the right of the T 1 column and on or above the main diagonal

are W . It says the same about the M(T, T̃ ) and M(S, S̃) charts.

The next theorem spells out the part of the M(S, T ) chart on and to the right of

the T1 column.

Theorem 7.7. Let X,Y ∈ S ∪ T with X ⊂ T1 ⊂ Y . Then M(X,Y ) =

M(X,D) = M(X).

��� �!�#"
. Because Y ⊂ D, Proposition 2.3 implies M(X,Y ) ⊂ M(X). So let

g ∈M(X) and let f ∈ X . By definition fg ∈ D. The possibilities for X are X = T 1,

X = S1 or X ∈ Sp ∪ Tp for p ∈ (1,∞]. In either of the first two cases, f ∈ T 1 and

g ∈ M(X) ⊂ T∞. So by Lemma 6.9 (ii), with q = p = 1, fg ∈ T1 ⊂ Y . In the

remaining cases Lemma 6.9 (i) or (ii) implies fg ∈ T1. So in any case g ∈ M(X,Y ).

�

Theorem 7.7 shows that all columns from T1 to its right and on or above the S1

row agree with that of the T0 column. But because T0 = D, this column is known

by the results of Section 6. Note that the corresponding assertion is valid for the

M(T, T̃ ) chart, but not to the M(S, S̃) chart.

The next four assertions combine to determine the remainder of theM(S, T ) chart.

Theorem 7.8. Let p, q ∈ [1,∞] with q 6 p and define r ∈ [1,∞] by 1
p + 1

r = 1
q .

Then M(Sp, Tq) = Tr.��� �!�#"
. First it is shown that M(Sp, Tq) ⊂ Tr. Begin by assuming q < p < ∞.

Let g ∈ D \ Tr. Then g ∈ D and there is y ∈ I such that lim sup
x→y

‖g‖x,y,r = ∞. By

Theorem 5.13 with sn = p for each n ∈ � , there is an f ∈ Sp such that fg 6∈ Tq.

Thus g 6∈ M(Sp, Tq). If q = p < ∞, proceed as above except using Proposition 5.4

instead of Theorem 5.13. Lastly, assume p = ∞. Then r = q and M(S∞, Tq) ⊂ Tq
by Proposition 2.2.
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Now Tr ⊂ M(Sp, Tq) is proved. First note that because q > 1, 1
p + 1

r = 1
q 6 1 =

1
p + 1

p′ . Thus
1
r 6 1

p′ , or p
′ 6 r. (This observation is used here and in the proofs

of the next three theorems as well.) Let f ∈ Sp and g ∈ Tr ⊂ Tp′ = M(Sp). Thus

fg ∈ D. Because Sp ⊂ Tp, Lemma 6.9 (i) implies Tr ⊂M(Sp, Tq). �

Theorem 7.9. Let p, q and r be as in Theorem 7.8, except that p < ∞. Then

M(Sp, T q) = M(Sp, Tq) = M(Sp, T q) = T r and if 1 < q, then M(Sp, T q) =

M(Sp, T q) = T r.��� �!�#"
. First M(Sp, T q) ⊂ T r is proved. Let t ∈ (p,∞). Then St ⊂ Sp.

By Propositions 2.3 and 2.6, M(Sp, T q) ⊂ M
(
St,

⋂
u∈(0,q)

Tu
)

=
⋂

u∈(0,q)

M(St, Tu). By

Theorem 7.8, M(St, Tu) = Tr1 where
1
t + 1

u = 1
r1
. Because u ∈ (0, q), 1

r1
= 1

u − 1
t >

1
q −

1
t = 1

r2
. Hence r1 < r2. It follows that M(Sp, T q) ⊂

⋂
r1∈(0,r2)

Tr1 = T r2 . Because

t > p, r2 < r. It follows that M(Sp, T q) ⊂
⋂

u∈(0,r)

Tu = T r.

Let f ∈ Sp and g ∈ T r ⊂ T p′ = M(Sp). Thus fg ∈ D. Because Sp ⊂

T p, Lemma 6.9 (ii) implies T r ⊂ M(Sp, T q). By Proposition 2.3, M(Sp, T q) ⊂

M(Sp, Tq) ⊂ M(Sp, T q). So by the previous paragraph M(Sp, T q) = M(Sp, Tq)

= M(Sp, T q) = T r. Now let 1 < q. Then p′ < r. Let f ∈ Sr and g ∈ T r ⊂ T p′ =

M(Sp). Thus fg ∈ D. Since Sp ⊂ T p, Lemma 6.9 (iii) implies T r ⊂M(Sp, T q). By

Proposition 2.3, M(Sp, T q) ⊂M(Sp, T q) ⊂M(Sp, T q). �

Note that the case q = 1 of the preceding theorem was dealt with in Theorem 7.7.

Also the inclusion T r ⊂ M(Sp, T q) is valid if p = ∞. Recall in that case r = q.

Thus T q ⊂M(S∞, T q) ⊂M(S∞, T q) ⊂ T q again by Propositions 2.3 and 2.2. Thus

M(S∞, T q) = M(S∞, T q) = T q .

Theorem 7.10. Let p, q ∈ [1,∞] with q < p and define r ∈ [1,∞) by 1
p + 1

r = 1
q .

Then M(Sp, T q) = M(Sp, Tq) = T r.��� �!�#"
. First it is shown that M(Sp, Tq) ⊂ T r. To that end let g ∈ D \ T r.

Then g ∈ D and there is a y ∈ I such that for each u > r, lim sup
x→y

‖g‖x,y,u = ∞.

For each n ∈ � , let sn ∈ (q,∞) with s1 6 s2 6 . . . and lim
n→∞

sn = p. For each

n ∈ � , define rn by 1
sn

+ 1
rn

= 1
q . Then the sequence {rn} decreases to r. Thus for

each n ∈ � , lim sup
x→y

‖g‖x,y,rn = ∞. By Theorem 5.13 there is a function f such that

f ∈ Ssn for all n ∈ � and hence f ∈ Sp because {sn} increases to p, while fg 6∈ Tq.

Thus g 6∈M(Sp, Tq).

Now let f ∈ Sp and g ∈ T r. Because q < p, p′ < r and hence T r ⊂ T p′ = M(Sp).

Thus fg ∈ D. Since Sp ⊂ T p, Lemma 6.9 (ii) (with the roles of p and r reversed)
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implies T r ⊂M(Sp, T q). (Because q < p, r <∞. Thus Lemma 6.9 (ii) applies.) By

Proposition 2.3, M(Sp, T q) ⊂M(Sp, Tq). Thus T r = M(Sp, T q) = M(Sp, Tq). �

Theorem 7.11. Let p, q and r be as in Theorem 7.10. Then M(Sp, T q) = T r.��� �!�#"
. The proof that M(Sp, T q) ⊂ T r parallels the first part of the proof of

Theorem 7.10 except that an increasing sequence {tn} is selected converging to q and

Theorem 5.14 is applied instead of Theorem 5.13. By the second part of the proof of

Theorem 7.10, T r ⊂M(Sp, T q). By Proposition 2.3, M(Sp, T q) ⊂M(Sp, T q). Thus

T r = M(Sp, T q). �

With Theorem 7.11 theM(S, T ) chart is complete. The chart appears on Figure 1.

The remaining three theorems indicate how the M(T, T̃ ) and M(S, S̃) charts can

be obtained from the M(S, T ) chart. The following notation is useful in the state-

ments of the remaining two theorems.

'(�*),+-) ./�10
7.12. Let S ∈ S. Then τ(S) denotes the corresponding member of

T . For example τ(Sp) = T p. Similarly for T ∈ T , σ(T ) denotes the corresponding

member of S.

Theorem 7.13. Let S ∈ {S1} ∪
⋃

p∈(1,∞]

Sp and let T ∈ {T 1} ∪
⋃

q∈(1,∞]

Tq with

q 6 p. Then M(τ(S), T ) = M(S, T ) ∩ Cap.

��� �!�#"
. Because S ⊂ τ(S) and because T∞ ⊂ τ(S), Proposition 2.3 implies

M(τ(S), T ) ⊂ M(S, T ) and M(τ(S), T ) ⊂ M(T∞, D) = S1 ⊂ S0 ⊂ Cap. Thus

M(τ(S), T ) ⊂M(S, T ) ∩ Cap.

To prove the opposite containment, first assume either (S = Sp and T ∈ Tq) or

(S ∈ {Sp, Sp} and T = T q). In each of these cases, M(S, T ) = T r where, as before
1
p + 1

r = 1
q . By Proposition 4.10, M(S, T ) ∩ Cap = T r ∩ Cap = Sr. Let g ∈ Sr.

If q = 1, then r = p′ and T = T 1. Thus S = Sp. Let f ∈ τ(S) = T p. Then

g ∈ Sr = Sp′ = M(T p) implies fg ∈ D. If q > 1 and if p = q, then r = ∞ and

hence g ∈ M(T 1). Thus for f ∈ τ(S) ⊂ T 1, fg ∈ D. If q > 1 and if q < p, then

p′ < r. Hence g ∈ Sr ⊂ Sp′ = M(T p). Thus for f ∈ τ(S) ⊂ T p, fg ∈ D. Thus

in any case Lemma 6.9 can be applied. If S = Sp, then p < ∞ and by Lemma 6.9

(ii), fg ∈ T q ⊂ T. Hence g ∈ M(τ(S), T ). If S ∈ {Sp, Sp}, then by Lemma 6.9 (iii),

fg ∈ T q.

Now consider all cases resulting in M(S, T ) = T r. Note that in all such cases,

r < ∞. That is, assume either (S = Sp and T = T q) or (S = Sp and T ∈

{T q, Tq}). By choice, in all casesM(S, T ) = T r and hence again by Proposition 4.10,

M(S, T ) ∩ Cap = T r ∩ Cap = Sr. Let g ∈ Sr. Because p
′ < r, Sr ⊂ Sp′ = M(T p).
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Thus fg ∈ D. So again Lemma 6.9 can be employed. By Lemma 6.9 (ii) with the

roles of f and g reversed, fg ∈ T q . Thus g ∈M(τ(S), T ).

Finally assume S = Sp and T = Tq. Then M(Sp, Tq) = Tr. Because T = Tq, q > 1

and hence p′ < r. Thus Tr ⊂ Tp′ . So M(Sp, Tq) ∩ Cap ⊂ T p′ ∩ Cap = Sp′ ⊂ Sp =

M(Tp). Thus g ∈M(Sp, Tq)∩Cap and f ∈ Tp implies fg ∈ D. So by Lemma 6.9 (i),

fg ∈ Tq. Hence g ∈ M(Tp, Tq). �

The results of the preceding theorem are displayed in Figure 2, X ∩Cap is denoted

by X̂.

The final two theorems will complete theM(S, S̃) chart. Recall that Theorem 7.3,

7.4 and 7.6 fill in part of that chart. But in this case, Theorem 7.7 doesn’t apply.

The next theorem deals with the remaining part of the chart except for the S∞ row.

Theorem 7.14. Let S ∈ {S1, S1, S∞} ∪
⋃

p∈(1,∞)

Sp and let T ∈
⋃

q∈[0,∞)

Tq with

q 6 p. Then M(S, σ(T )) = M(S, T ) ∩ Cap.

��� �!�#"
. Because σ(T ) ⊂ T , M(S, σ(T )) ⊂ M(S, T ). Moreover M(S, σ(T )) ⊂

σ(T ) ⊂ Cap. Thus M(S, σ(T )) ⊂M(S, T ) ∩ Cap.

First that part of the chart including and to the right of the column headed S1 and

above and including the row labeled S1, but excluding S∞ is handled. So assume

T1 ⊂ T . Each row is dealt with separately. First let S = Sp. Then p ∈ [1,∞] and

M(Sp, T ) ∩ Cap = T p′ ∩ Cap = Sp′ by Proposition 4.10. Let g ∈ Sp′ and let f ∈ Sp.

By Theorem 4.11 (ii) (with the “q” of that theorem equal 1), fg ∈ S1 ⊂ σ(T )

because T1 ⊂ T. Thus M(Sp, σ(T )) = Sp′ . Next let S = Sp. Then p ∈ [1,∞) and

M(Sp, T ) ∩ Cap = Tp′ ∩ Cap. Let g ∈ Tp′ ∩ Cap and f ∈ Sp. By Theorem 4.11 (i),

fg ∈ S1 ⊂ σ(T ). Thus M(Sp, σ(T )) = Tp′ ∩ Cap. The last case for this part of the

chart is S = Sp. In this case p ∈ (1,∞) so that p′ < ∞ and M(Sp, T ) ∩ Cap =

T p′ ∩Cap = Sp′ . Let g ∈ Sp′ and let f ∈ Sp. By Theorem 4.11 (ii) (with the roles of

p and r = p′ reversed), fg ∈ S1 ⊂ σ(T ). Thus M(Sp, σ(T )) = Sp′ .

Now for the remainder of the chart except for the S∞ row, let T ∈ {T 1}∪
⋃

q∈(1,∞]

Tq

and let S ∈ {S1} ∪
⋃

p∈(1,∞]

Sp. First consider all cases resulting in M(S, T ) = T r.

Specifically assume either (S = Sp and T ∈ Tq) or (S ∈ {Sp, Sp} and T = T q). Then

in all of these cases M(S, T ) = T r where as always
1
p + 1

r = 1
q . By Proposition 4.10,

M(S, T ) ∩ Cap = T r ∩ Cap = Sr. Let g ∈ Sr and first suppose f ∈ Sp. By Theo-

rem 4.11 (ii), fg ∈ Sq ⊂ σ(T ). HenceM(Sp, σ(T )) = Sr. Next suppose S = Sp. Then

T = T q . Let g ∈ Sr and let f ∈ Sp. By Theorem 4.11 (iii), fg ∈ Sq = σ(T q). Thus

M(Sp, σ(T q)) = Sr. The remaining case is S = Sp. Because Sp ⊂ Sp ⊂ Sp, by Propo-

sition 2.3, Sr = M(Sp, Sq) ⊂M(Sp, Sq) ⊂M(Sp, Sq) = Sr. Hence M(Sp, Sq) = Sr.
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��� �!�#"
. First assume T ∈ {T 1}∪

⋃
q∈[0,1)

Tq. By Proposition 2.2,M(S∞, σ(T )) ⊂

σ(T ) ⊂ Cap and by Proposition 2.3 M(S∞, σ(T )) ⊂ M(S∞) = T1. Therefore

M(S∞, σ(T )) ⊂ T1 ∩ Cap. Let f ∈ S∞ and g ∈ T1 ∩ Cap. Because S∞ ⊂ Cap,

fg ∈ Cap. Because f ∈ S∞, by Proposition 6.10 (i), fg ∈ T1 ⊂ T 1. Thus

fg ∈ T 1 ∩ Cap = S1 ⊂ σ(T ). Therefore g ∈M(S∞, σ(T )).

Finally assume T ∈ {T 1, T1} ∪
⋃

q∈(1,∞]

Tq . By Proposition 2.2, M(S∞, σ(T )) ⊂

σ(T ). Let f ∈ S∞ and g ∈ σ(T ). Show that fg ∈ σ(T ). Suppose T = T q . Then

q ∈ [1,∞) and σ(T ) = Sq = M(T q′). Let h ∈ T q′ . By Proposition 6.10 (iii), gh ∈ T1.

Because S∞ = M(T1), fgh ∈ D. So fg ∈ M(T q′) = Sq . The remaining two cases,

T = Tq and T = T q, proceed in an analogous manner. �
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