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Abstract. Description of multiplication operators generated by a sequence and compo-
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1. Introduction

Let f be a complex-valued measurable function defined on a σ-finite measure space

(X,A, µ). For s > 0, define the distribution function µf of f as

µf (s) = µ{x ∈ X : |f(x)| > s}.

By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{s > 0: µf (s) 6 t}, t > 0.

The Lorentz space L(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is the set of all complex-valued

measurable functions f on X such that ‖f‖∗pq < ∞, where

‖f‖∗pq =











{

q

p

∫ ∞

0

(t1/pf∗(t))q dt

t

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
t>0

t1/pf∗(t), 1 < p 6 ∞, q = ∞.

L(p, q) spaces are linear spaces and ‖ · ‖∗pq is a quasi-norm which is a norm for

1 6 q < p < ∞. For t > 0, let

f∗∗(t) =
1

t

∫ t

0

f∗(s) ds.
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Now the functional defined as

‖f‖pq =











{

q

p

∫ ∞

0

(t1/pf∗∗(t))q dt

t

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
t>0

t1/pf∗∗(t), 1 < p 6 ∞, q = ∞

is equivalent to ‖ · ‖∗pq and L(p, q) is a normed linear space with respect to ‖ · ‖pq.

The L(p, q) space is moreover a Banach space. The Lp-spaces for 1 < p 6 ∞ are

equivalent to the spaces L(p, p). For more details on Lorentz spaces one can refer to

[2], [7] and [8] and references therein. For X = N with A = 2N, the power set of X,
and µ = counting measure, the distribution function of any complex-valued function

a = {a(n)}n>1 can be written as

µa(s) = µ{n ∈ N : |a(n)| > s}, s > 0.

The non-increasing rearrangement a∗ of a is given as

a∗(t) = inf{s > 0: µa(s) 6 t}, t > 0.

We can interpret the non-increasing rearrangement of a with µa(s) < ∞, s > 0,

as a sequence {a∗(n)} if we define for n − 1 6 t < n

a∗(n) = a∗(t) = inf{s > 0: µa(s) 6 n − 1}.

Then the sequence a∗ = {a∗(n)} is obtained by permuting {|a(n)|}n∈S , S =

{n : a(n) 6= o}, in the decreasing order with a∗(n) = 0 for n > µ(S) if µ(S) < ∞.

The Lorentz sequence space l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is the set of all

complex sequences a = {a(n)} such that ‖a‖(p,q) < ∞, where

‖a‖(p,q) =















{ ∞
∑

n=1

(n1/pa∗(n))qn−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
n>1

n1/pa∗(n), 1 < p 6 ∞, q = ∞.

The Lorentz sequence space l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is a linear space and

‖ · ‖(p,q) is a quasi-norm. Moreover, l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is complete with

respect to the quasi-norm ‖ · ‖(p,q) and l(p, q), 1 6 q 6 p < ∞ is a complete normed

linear space with respect to ‖ · ‖(p,q). Throughout this paper we consider the spaces

l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, with respect to ‖ · ‖(p,q). Such spaces l(p, q) fall

in the category of L(p, q) spaces [8] as well as in the category of functional Banach

spaces [7]. The lp-spaces for 1 < p 6 ∞ are equivalent to the spaces l(p, p). In [7], [9],
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a description of the duals, isomorphic lp-subspaces of Orlicz-Lorentz sequence spaces

Lϕ,w is given and in [12] isomorphic properties of Orlicz-Lorentz sequence spaces are

discussed.

The Lorentz sequence space l(p, q) coincides with Lϕ,w when ϕ(t) = tq and the

weight sequence is w(n) = n(q/p)−1. In the case of the Lorentz sequence space l(p, q)

one can have a better feeling of the behavior of multiplication, composition operators

and the inducing sequences while in the case of the abstract Lorentz space L(p, q)

as well as the Banach function spaces [6] it becomes difficult. Multiplication and

composition operators are studied in various function spaces in [1], [3], [5], [6], [13]

and [14]. In [15], Singh studied these operators on the weak Lebesgue space lp.

Let u = {u(n)} be a complex sequence. We define a linear transformation Mu on

the Lorentz sequence space l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, into the linear space of

all complex sequences by

Mu(a) = ua = {u(n)a(n)}, where a = {a(n)}.

If Mu is bounded with range in l(p, q), then it is called a multiplication operator

on l(p, q). For a mapping T : N → N we define a linear transformation CT on the

Lorentz sequence space l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, into the linear space of all

complex sequences by

CT (a) = a ◦ T = {a(T (n))}, where a = {a(n)}.

If CT is bounded with range in l(p, q), then it is called a composition operator on

l(p, q). By B(l(p, q)) we mean the algebra of all bounded linear operators on l(p, q).

An operator A ∈ B(l(p, q)) is said to be Fredholm if it has closed range, dim(Ker(A))

and codim(R(A)) are finite, where dim(Ker(A)) is the dimension of the kernel of A

and codim(R(A)) is the co-dimension of the range of A, namely the dimension of

any subspace complementary to the range of A.

In this paper we are interested in the study of compactness, Fredholmness, in-

vertibility etc. of multiplication and composition operators on the Lorentz sequence

spaces l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞. It is shown in this paper that there exists a

plenty of compact multiplication operators on l(p, q). Multiplication and composi-

tion operators having closed ranges are also characterized.
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2. Characterizations: Multiplication operators

The section is devoted to the study of multiplication operators Mu on the space

l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, induced by a sequence u = {u(n)}. It follows

immediately from [6] Theorem 2.4 that the only compact multiplication operator

on the non-atomic Lorentz space is the zero operator. In the case of the Lorentz

sequence space we show the existence of plenty of compact non-zero multiplication

operators on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, and compact multiplication operators

are characterized.

Theorem 2.1. Let u = {u(n)} be a complex sequence. Then Mu induced by u

is bounded on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, if and only if {u(n)} is bounded.

P r o o f . If Mu is a bounded operator, then there exists K > 0 such that

‖Mua‖(p,q) 6 K‖a‖(p,q) for all a = {a(n)} ∈ l(p, q).

For each n ∈ N and en = {en(m)}m in l(p, q), where

en(m) =

{

1 if m = n,

0 otherwise,
and e∗n(m) =

{

1 if m = 1,

0 otherwise,

we have ‖en‖(p,q) = 1 and so

‖Muen‖
q
(p,q) 6 Kq‖en‖

q
(p,q).

This gives, for 1 < p < ∞, 1 6 q < ∞,

∞
∑

m=1

((uen)∗(m))qm(q/p)−1 6 Kq
∞
∑

m=1

(e∗n(m))qm(q/p)−1

⇒ (uen)∗(1) 6 Ke∗n(1), that is, |u(n)| 6 K,

and for q = ∞, 1 < p 6 ∞,

sup
m>1

m1/p((uen)∗(m)) 6 K sup
m>1

m1/p(e∗n(m))

⇒ (uen)∗(1) 6 Ke∗n(1), that is, |u(n)| 6 K.

Thus in any case {u(n)} is a bounded sequence.

Conversely, if u = {u(n)} satisfies |u(n)| 6 K for all n ∈ N and some K > 0, then

for any a = {a(n)} in l(p, q), ua = {u(n)a(n)} satisfies

|u(n)a(n)| 6 K|a(n)|.
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This gives (ua)∗(n) 6 Ka∗(n) for each n ∈ N , and so we obtain
‖Mua‖(p,q) =















{ ∞
∑

n=1

((ua)∗(n))qn(q/p)−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
n>1

n1/p(ua)∗(n), 1 < p 6 ∞, q = ∞

6 K‖a‖(p,q).

Thus Mu is bounded on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞. �

Theorem 2.2. Let Mu ∈ B(l(p, q)), 1 < p 6 ∞, 1 6 q < ∞. Then Mu is

invertible if and only if there is δ > 0 such that

|u(n)| > δ for all n ∈ N .

P r o o f . If Mu is invertible then we find δ > 0 satisfying

‖Mua‖(p,q) > δ‖a‖(p,q) for all a ∈ l(p, q).

In particular, for en = {en(m)} this gives |u(n)| > δ.

Conversely, if |u(n)| > δ for all n ∈ N and some δ > 0, then define another

sequence v = {v(n)} where v(n) = 1/u(n). Clearly, in view of Theorem 2.1, Mv is

bounded on l(p, q) and Mv = M−1
u . �

Theorem 2.3. Let Mu ∈ B(l(p, q)), 1 < p 6 ∞, 1 6 q 6 ∞. Then Mu has closed

range if and only if for some δ > 0,

|u(n)| > δ for all n ∈ S,

where S = {n ∈ N : u(n) 6= 0}.

P r o o f . Suppose |u(n)| > δ for all n ∈ S and some δ > 0. We claim that

Mu|lpq(S) has closed range where

lpq(S) = {a = {a(n)} ∈ l(p, q) : a(n) = 0 for n ∈ N \ S}.

Let f, fk ∈ lpq(S) where f = {f(n)} and for each k > 1, fk = {fk(n)} are such that

Mufk → f as k → ∞. Then we have, as n, m → ∞,

‖Mufn − Mufm‖(p,q) → 0.
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Put anm = fn − fm, then for each s > 0,

{k ∈ N : |u(k)anm(k)| > s} ⊇ {k ∈ N : |anm(k)| > s/δ}.

This gives δa∗
nm(k) 6 (uanm)∗(k) for each k ∈ N . Therefore

‖uanm‖(p,q) = ‖Mufn − Mufm‖(p,q)

=















{

∑

k∈S

((uanm)∗(k))qk(q/p)−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
k∈S

k1/p(ua∗
nm(k), 1 < p 6 ∞, q = ∞

>















{

∑

k∈S

δq((anm)∗(k))qk(q/p)−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
k∈S

k1/pδ(a∗
nm(k), 1 < p 6 ∞, q = ∞

= δ‖anm‖(p,q).

Since ‖uanm‖(p,q) → 0 as n, m → ∞, this implies anm → 0 as n, m → ∞. This

means {fk} is a Cauchy sequence in lpq(S), which is a closed subspace of l(p, q).

Hence we can find g ∈ lpq(S) such that fk → g as k → ∞. By virtue of the

continuity of Mu, Mufk → Mug. Hence f = Mug and thus Mu|lpq(S) has closed

range. Since Ker(Mu) = lpq(N \ S), we find that Mu has closed range.

Conversely, if the condition does not hold, then for each n ∈ N we can find kn ∈ S

satisfying

|u(kn)| < 1/n.

For each n, the sequence ekn
= {ekn

(m)}, where

ekn
(m) =

{

1 if m = kn,

0 otherwise,

satisfies ‖ekn
‖(p,q) = 1 and

‖Muekn
‖(p,q) = ‖uekn

‖(p,q)

=















{ ∞
∑

m=1

((uekn
)∗(m))qm(q/p)−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
m>1

m1/p(uekn
)∗(m), 1 < p 6 ∞, q = ∞

= (uekn
)∗(1) = |u(kn)| <

1

n
‖ekn

‖(p,q).

Thus Mu is not bounded away from zero, a contradiction. Hence the result. �
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Theorem 2.4. Let Mu ∈ B(l(p, q)), 1 < p 6 ∞, 1 6 q 6 ∞. A necessary and

sufficient condition for Mu to be compact is that |u(n)| → 0 as n → ∞.

P r o o f . Suppose u(n) does not tend to 0 as n → ∞. Then |u(n)| > δ for

infinitely many values of n and some δ > 0. Let

A = {n ∈ N : |u(n)| > δ} and B = {ek = {ek(n)} : k ∈ A}.

Then B is a bounded set in l(p, q). Moreover, for each n, k, l ∈ A,

|(uek − uel)(n)| > δ|(ek − el)(n)|

and so

(uek − uel)
∗(n) > δ(ek − el)

∗(n).

Thus

‖Muek − Muel‖(p,q) > δ‖ek − el‖(p,q)

or

‖Muek − Muel‖(p,q) > δ for k 6= l,

which shows that Mu is not compact.

Conversely, if u(n) → 0 as n → ∞, we can find δ > 0 and n0 ∈ N such that
|u(n)| < δ for all n > n0. For each n ∈ N , define un ≡ {un(k)}, where

un(k) =

{

u(k) if k 6 n,

0 otherwise.

Then {un(k)} is a bounded sequence so that Mun
is bounded on l(p, q). Moreover,

eachMun
is compact and one can check thatMun

→ Mu uniformly. This yields that

Mu is compact. �

As one can easily find that if N \ S is a finite set then Ker(Mu) and range of Mu

are subspaces generated by {en : n ∈ N \ S} and {em : m ∈ S} respectively, we have

Theorem 2.5. Let Mu ∈ B(l(p, q)), 1 < p 6 ∞, 1 6 q 6 ∞. Then Mu is

Fredholm if and only if N \ S is finite and there exists δ > 0 such that

|u(n)| > δ for all n ∈ N .

3. Characterizations: Composition operators

In this section, isometric and Fredholm composition operators are characterized.

The study of boundedness, compactness and closed range of composition operators

on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is also included.
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Theorem 3.1. A mapping T : N → N induces a bounded composition operator
CT : a 7→ a ◦ T

on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, if and only if there exists M > 0 such that

µT−1({n}) 6 M for all n ∈ N .

P r o o f . In case CT is bounded, we have for some R > 0

‖CT a‖(p,q) 6 R‖a‖(p,q) for all a ∈ l(p, q).

Let n ∈ N be such that T−1({n}) is not empty.

Then en = {en(k)} ∈ l(p, q) and hence

‖CT en‖(p,q) 6 R‖en‖(p,q) = R,

that is,

‖eT−1({n})‖(p,q) 6 R.

However, eT−1({n}) = {eT−1({n})(k)} where

eT−1({n})(k) =

{

1 if k ∈ T−1({n}),

0 otherwise.

Then

e∗T−1({n})(k) =

{

1 if k = 1, 2, . . . , µT−1({n}),

0 otherwise.

Hence

R > ‖eT−1({n})‖(p,q)

=















{µT−1({n})
∑

k=1

k(q/p)−1

}1/q

, 1 < p < ∞, 1 6 q < ∞,

sup
k=1,2,...,µT−1({n})

k1/pe∗T−1({n})(k), 1 < p 6 ∞, q = ∞

=







{

(1) +
( 1

21−q/p

)

+ . . . +
( 1

(µT−1({n}))1−q/p

)}1/q

, 1 < p < ∞, 1 6 q < ∞,

(µT−1({n})), 1 < p 6 ∞, q = ∞

>



















{

(µT−1({n})
( 1

(µT−1({n}))1−q/p

)}1/q

, 1 6 q < p < ∞,

(µT−1({n})1/q, 1 < p 6 q < ∞,

(µT−1({n})1/p, 1 < p 6 ∞, q = ∞

=

{

(µT−1({n})1/p, 1 6 q < p < ∞ or 1 < p 6 ∞, q = ∞,

(µT−1({n})1/q, 1 < p 6 q < ∞.
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Hence in any case we can find M > 0 such that µT−1({n}) 6 M for each n ∈ N .

Conversely, if µT−1({n}) 6 M for some M ∈ N then for any a = {a(n)} in l(p, q)

and a ◦ T = {(a ◦ T )(n)} we have for all t > 0

(a ◦ T )∗(Mt) 6 a∗(t),

and so for all k ∈ N ∪ {0} and m = 1, 2, . . . , M we have

(a ◦ T )∗(kM + m) 6 a∗(k + 1).

Hence, for 1 < p < ∞, 1 6 q < ∞, taking r = 1 − q/p we obtain

‖a ◦ T‖q
(p,q)

=
∞
∑

k=1

((a ◦ T )∗(k))qk(q/p)−1

=
[

((a ◦ T )∗(1))q + ((a ◦ T )∗(2))q 1

2r
+ . . . + ((a ◦ T )∗(M))q 1

Mr

]

+
[

((a ◦ T )∗(M + 1))q 1

(M + 1)r
+ . . . + ((a ◦ T )∗(2M))q 1

(2M)r

]

+ . . .

6

[

1 +
1

2r
+ . . . +

1

M r

]

(a∗(1))q +
[ 1

(M + 1)r
+ . . . +

1

(2M)r

]

(a∗(2))q

+
[ 1

(2M + 1)r
+ . . . +

1

(3M)r

]

(a∗(3))q + . . .

6















M
[

(a∗(1))q +
1

2r
(a∗(2))q +

1

3r
(a∗(3))q + . . .

]

, 1 6 q < p < ∞,

M (1−r)
[

(a∗(1))q +
1

2r
(a∗(2))q +

1

3r
(a∗(3))q + . . .

]

, 1 < p 6 q < ∞

=

{

M‖a‖q
(p,q), 1 6 q < p < ∞,

Mq/p‖a‖q
(p,q), 1 < p 6 q < ∞

and for q = ∞, 1 < p 6 ∞ we have

‖a ◦ T‖q
(p,q) 6 M‖a‖q

(p,q).

Thus CT is bounded on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞. �
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Theorem 3.2. Let CT be a bounded linear composition operator on l(p, q),

1 < p 6 ∞, 1 6 q 6 ∞. Then the following conditions are equivalent:

(1) T is invertible,

(2) CT is invertible,

(3) CT is an isometry.

P r o o f . The proofs of (1) ⇔ (2) follow the lines of the proof given in [15] in the

case of lp, which is independent of any other result except Theorem 3.1. Here we

just prove the equivalence of (1) and (3). In case (1) holds, then for every E ⊆ N
µ{T−1(E)} = µ(E).

Then for each a = {a(n)} in l(p, q) and a ◦ T = {(a ◦ T )(n)} we have for all s > 0

µa◦T (s) = µa(s) ⇒ (a ◦ T )∗(n) = a∗(n) for all n ∈ N .

Hence ‖CT ‖(p,q) = ‖a‖(p,q) so that CT is an isometry.

Conversely, if CT is an isometry, then for each n ∈ N we have
‖CT en‖(p,q) = ‖en‖(p,q) = 1.

This implies µT−1({n}) = 1. Thus T−1({n}) is a singleton for each n ∈ N . Hence T

is invertible. �

Theorem 3.3. Let CT be a bounded linear composition operator on l(p, q),

1 < p 6 ∞, 1 6 q 6 ∞. Then CT is Fredholm if and only if both {n ∈ N :

µT−1({n}) > 2} and N \ T (N ) are finite.

P r o o f . Suppose CT is Fredholm. If E = {n ∈ N : µT−1({n}) > 2} is not finite,

then for each k ∈ E let nk, mk ∈ N be such that T (nk) = T (mk), nk 6= mk. For each

k ∈ E, define fk = {fk(m)} where

fk(m) =











1 if m = nk,

−1 if m = mk,

0 otherwise.

Then each fk lies in l(p, q) but not in range of CT . Moreover, {fk : k ∈ E} being

linearly independent implies l(p, q) \ R(CT ) is infinite dimensional, a contradiction.

Thus the set E must be finite. Similarly, N \ T (N ) being an infinite set implies that

Ker(CT ) is infinite dimensional, a contradiction.

The converse is easy to prove. Hence the result follows. �
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Along the lines of the proof carried out in [15] for lp-spaces, we arrive at the

following results:

(1) Let CT be a bounded linear composition operator on l(p, q), 1 < p 6 ∞, 1 6

q 6 ∞. Then CT has closed range but not a compact one.

(2) An operator A on l(p, q), 1 < p 6 ∞, 1 6 q 6 ∞, is a composition operator if

and only if there exists a partition {Pn} of N such that
A(en) =

∑

m∈Pn

em.

A c k n ow l e d g em e n t s. The authors are grateful to the referee for his valuable

suggestions helping to improve the paper.
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