Photosynthetica 2015, 53(1):23-28 | DOI: 10.1007/s11099-015-0071-z

Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain

M. H. Liu1,2, L. T. Yi1,2,*, S. Q. Yu1,2, F. Yu1,2, X. M. Yin1
1 School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, China
2 The Naturing Station for the State Key Laboratory of Subtropical Silviculture, Lin'an, China

Acid rain causes damages to forest ecosystems. Here, we reported that acid rain could promote plant growth. From 2006 to 2009, one-year-old Elaeocarpus glabripetalus seedlings were sprayed with simulated acid rain (AR) (pH 2.5, 4.0, and 5.6). The maximum quantum yield efficiency of PSII and the actual photochemical quantum efficiency of PSII increased with rising AR acidity, which facilitated chlorophyll fluorescence and plant growth, as shown by a declining minimal fluorescence yield of dark-adapted state with little damage to the PSII reaction center. After the second experimental year, the plant height and ground diameter were greater at pH 2.5 than those found at pH 4.0 and 5.6. This showed the positive effects of AR on the seedling growth and photosynthesis of E. glabripetalus, revealing that this species exhibited a stronger resistance to acid deposition than some other tree species. This implies that E. glabripetalus is an acid-tolerant species.

Keywords: acid stress; growth adaptability; photosynthetic efficiency

Received: May 2, 2013; Accepted: May 2, 2014; Published: March 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, M.H., Yi, L.T., Yu, S.Q., Yu, F., & Yin, X.M. (2015). Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain. Photosynthetica53(1), 23-28. doi: 10.1007/s11099-015-0071-z.
Download citation

References

  1. Abbasi T., Poornima P., Kannadasan T. et al.: Acid rain: past, present, and future. - Int. J. Environ. Eng. 5: 229-272, 2013. Go to original source...
  2. Bolhar-Nordenkampf H.R., Long S.P., Baker N.R. et al.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. - Funct. Ecol. 3: 497-514, 1989. Go to original source...
  3. Ceron R.M., Ceron J.G., Guerra J.J. et al.: Effects of simulated acid rain on tropical trees of the coastal zone of Campeche, Mexico. - WIT Trans. Ecol. Envir. 126: 259-270, 2009. Go to original source...
  4. Dias B.B., Leite M.L., Farago P.V. et al.: Sulfur effect by simulated acid rain on morphophysiological parameters of the bean plant. - Acta Sci.-Agron. 32: 433-439, 2010.
  5. Fan H.B, Wang Y.H.: Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. - Forest Ecol. Manag. 126: 321-329, 2000. Go to original source...
  6. Feng Z.W.: [Impacts and control strategies of acid deposition on terrestrial ecosystems in China.] - Eng. Sci. 9: 5-11, 2000. [In Chinese]
  7. Figueroa M.E., Fernández-Baco L., Luque T. et al.: Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. - J. Veg. Sci. 8: 881-888, 1997. Go to original source...
  8. Fleischer W.E.: The relation between chlorophyll content and rate of photosynthesis. - J. Gen. Physiol. 18: 573-597, 1935. Go to original source...
  9. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochem. Biophys. Acta 990: 87-92, 1989. Go to original source...
  10. Guo D.P., Guo Y.P., Zhao J.P. et al.: Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. - Plant Sci. 168: 57-63, 2005. Go to original source...
  11. Guo Y.P., Zhou H.F., Zhang L.C.: Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. - Sci. Hortic.-Amsterdam 108: 260-267, 2006.
  12. Kumagai E., Araki T., Kubota F.: Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. - Plant Prod. Sci. 12: 50-53, 2009. Go to original source...
  13. Larssen T., Carmichael G.R.: Acid rain and acidification in China: the importance of base cation deposition. - Environ. Pollut. 110: 89-102, 2000. Go to original source...
  14. Larssen T., Lydersen E., Tang D.G. et al.: Acid rain in China. - Environ. Sci. Technol. 40: 418-425, 2006. Go to original source...
  15. Liu J.X., Zhou G.Y., Yang C.W. et al.: Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. & Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China. - Acta Physiol. Plant. 29: 33-38, 2007. Go to original source...
  16. Liu T.W., Wu F.H., Wang W H. et al.: Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. - Tree Physiol. 31: 402-413, 2011. Go to original source...
  17. Ma Y.: Effects of simulated acid rain on Cryptomeria fortunei of Tianmu Mountain. - Master's Thesis, East China Normal University, Shanghai 2007.
  18. Maxwell K., Johnson, G.: Chlorophyll fluorescence-a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  19. Menz F.C., Seip H.M.: Acid rain in Europe and the United States: an update. - Environ. Sci. Policy 7: 253-265, 2004. Go to original source...
  20. Morrissey J., Guerinot M.L.: Iron uptake and transport in plants: the good, the bad, and the ionome. - Chem. Rev. 109: 4553-4567, 2009. Go to original source...
  21. Neves N.R., Oliva M.A., Centeno D.C. et al.: Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. - Sci. Total Environ. 407: 3740-3745, 2009. Go to original source...
  22. Pan W.H., Zhao Y.P., Wu J.S. et al.: [Analysis on the nutrient elements in litters of different forest vegetations and soil fertility.] - J. Anhui Agri. Sci. 39: 5828-5829, 2011. [In Chinese]
  23. Qin L.Q., Li L., Bi C. et al.: Damaging mechanisms of chilling and salt stress to Arachis hypogaea L. leaves. - Photosynthetica 49: 37-42, 2011. Go to original source...
  24. Sheng M., Tang M., Chen H. et al.: Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. - Mycorrhiza 18: 287-296, 2008. Go to original source...
  25. Singh A., Agrawal M.: Acid rain and its ecological consequences. - J. Environ. Biol. 29: 15-24, 2008.
  26. Stuart N.W.: Adaption of the micro-Kjeldahl method for the determination of nitrogen in plant tissues. - Plant Physiol. 11: 173-179, 1936. Go to original source...
  27. van Hoorn J.W., Katerji N., Hamdy A. et al.: Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. - Agr. Water Manage. 51: 87-98, 2001. Go to original source...