Photosynthetica 2019, 57(4):1142-1155 | DOI: 10.32615/ps.2019.121

Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats

D.M.S. LOPES1, M.M.P. TOGNELLA1,2, A.R. FALQUETO2, M.L.G. SOARES3
1 Department of Oceanography, Federal University of Espírito Santo, Vitória, ES, Brazil
2 Department of Agrarian and Biological Sciences, Federal University of Espírito Santo, São Mateus, ES, Brazil
3 Department of Biological Oceanography, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil

This study evaluated the photosynthetic efficiency in Rhizophora mangle plants in two mangrove forests, the highest salinity (HS) area, and the lower salinity (LS) area. The CO2 assimilation rate (PN), stomatal conductance, leaf transpiration, intrinsic water-use efficiency, and chlorophyll a fluorescence L-band, IP-phase, and performance index were higher in the LS area. The instantaneous water-use efficiency, initial fluorescence, maximum fluorescence, and J-step were higher in the HS area. The plants growing in the HS area exhibited greater efficiency in electron transfer between the oxygen-evolving complex and the acceptor side of the PSII. The plants growing in the LS area exhibited greater efficiency of the reduction of the final acceptors of the PSI, an important strategy to the stress conditions. The results show that a greater variation in salinity in the LS area had the effect on PN and long-term changes in the rainfall regime may alter the vegetation community of mangrove forests.

Keywords: energy flow; gas exchange; halophytes; JIP test; salt tolerance; tropical region.

Received: July 4, 2019; Accepted: August 16, 2019; Prepublished online: October 4, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LOPES, D.M.S., TOGNELLA, M.M.P., FALQUETO, A.R., & SOARES, M.L.G. (2019). Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats. Photosynthetica57(4), 1142-1155. doi: 10.32615/ps.2019.121.
Download citation

References

  1. Alongi D.M.: Carbon cycling and storage in mangrove forests. - Annu. Rev. Mar. Sci. 6: 195-219, 2014.
  2. Aro E.M., Virgin I., Andersson B.: Photoinhibition of photo-system II. Inactivation, protein damage and turnover. - BBA-Bioenergetics 1143: 113-134, 1993. Go to original source...
  3. Ball M.C.: Ecophysiology of mangroves. - Trees 2: 129-142, 1988.
  4. Barbier E.B.: The protective service of mangrove ecosystems: A review of valuation methods. - Mar. Pollut. Bull. 109: 676-681, 2016. Go to original source...
  5. Barr J.G., Fuentes J.D., Engel V., Zieman J.C.: Physiological responses of red mangroves to the climate in the Florida Everglades. - J. Geophys. Res. 114: G02008, 2009. Go to original source...
  6. Basu P.S., Sharma A., Sukumaran N.P.: Changes in net photo-synthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. - Photosynthetica 35: 13-19, 1998. Go to original source...
  7. Bolhàr-Nordenkampf H. R., Öquist, G.O.: Chlorophyll fluores-cence as a tool in photosynthesis research. - In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H.R. et al. (ed.): Photosynthesis and Production in a Changing Environment. Pp. 193-206. Springer, Dordrecht 1993. Go to original source...
  8. Bompy F., Lequeue G., Imbert D., Dulormne M.: Increasing fluctuations of soil salinity affect seedling growth perfor-mances and physiology in three Neotropical mangrove species. - Plant Soil 380: 399-413, 2014. Go to original source...
  9. Chang I.H., Cheng K.T., Huang P.C. et al.: Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. - Acta Physiol. Plant. 34: 1165-1176, 2012.
  10. Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. - Annu. Rev. Biochem. 83: 317-340, 2014.
  11. Chen Y., Ye Y.: Effects of salinity and nutrient addition on mangrove Excoecaria agallocha. - PLoS ONE 9: e93337, 2014.
  12. Dangremond E.M., Feller I.C., Sousa W.P.: Environmental tolerances of rare and common mangroves along light and salinity gradients. - Oecologia 179: 1187-1198, 2015. Go to original source...
  13. Das A.B., Parida E.U.C., Das E.P.: Studies on pigments, proteins and photosynthetic rates in some mangroves and mangrove associates from Bhitarkanika, Orissa. - Mar. Biol. 141: 415-422, 2002.
  14. Dassanayake M., Haas J.S., Bohnert H.J., Cheeseman J.M.: Shedding light on an extremophile lifestyle through trans-criptomics. - New Phytol. 183: 764-775, 2009. Go to original source...
  15. Duke N.C.: Mangrove floristics and biogeography. - In: Robertson A.I, Alongi D.M. (ed.): Tropical Mangrove Ecosystems. Pp. 63-100. American Geophysical Union, Washington 1992.
  16. Duke N.C., Bell A.M., Pederson D.K. et al.: Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: Consequences for marine plant habitats of the GBR World Heritage area. - Mar. Pollut. Bull. 51: 308-324, 2005. Go to original source...
  17. Giri C., Ochieng E., Tieszen L.L. et al.: Status and distribution of mangrove forests of the world using earth observation satellite data. - Global Ecol. Biogeogr. 20: 154-159, 2010.
  18. Gomes M.T.G., Luz A.C., Santos M.R. et al.: Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. - Sci. Hortic.-Amsterdam 142: 49-56, 2012.
  19. Goussi R., Manaa A., Derbali W. et al.: Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. - J. Photoch. Photobio. B 183: 275-287, 2018.
  20. Guha A., Sengupta D., Reddy A.R.: Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. - J. Photoch. Photobio. B 119: 71-83, 2013.
  21. Hao G., Jones T.J., Luton C. et al.: Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: Impacts on hydraulic architecture and gas exchange. - Tree Physiol. 29: 697-705, 2009.
  22. Hoppe-Speer C.L., Adams J.B., Rajkaran A., Bailey D.F.: The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. - Aquat. Bot. 95: 71-76, 2011. Go to original source...
  23. Huang W., Yang S.J., Zhang S.B. et al.: Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. - Planta 235: 819-828, 2012. Go to original source...
  24. Hunt S.: Measurements of photosynthesis and respiration in plants. - Physiol. Plantarum 117: 314-325, 2003. Go to original source...
  25. Hutchings P., Saenger P.: Ecology of Mangroves. Pp. 388. University of Queensland Press, Queensland 1987.
  26. Jithesh M.N., Prashanth S.R., Sivaprakash K.R., Parida A.: Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. - Plant Cell Rep. 25: 865-876, 2006. Go to original source...
  27. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  28. Kitao M., Utsugi H., Kuramoto S. et al.: Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia. - Physiol. Plantarum 117: 376-382, 2003. Go to original source...
  29. Krauss K.W., Allen J.A.: Influence of salinity and shade on seedling photosynthesis and growth of two mangrove species Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. - Aquat. Bot. 77: 311-324, 2003. Go to original source...
  30. Krauss K.W., Lovelock C.E., McKee K.L. et al.: Environmental drivers in mangrove establishment and early development: A review. - Aquat. Bot. 89: 105-127, 2008. Go to original source...
  31. Krauss K.W., Twilley R.R., Doyle T.W., Gardiner E.S.: Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. - Tree Physiol. 26: 959-968, 2006. Go to original source...
  32. Lambers J., Chapin F.S., Pons T.L.: Plant Physiological Ecology. Pp. 604. Springer, New York 2008.
  33. Larcher W.: [Plant Ecophysiology.] Pp. 531. RiMa, São Carlos 2000. [In Portuguese]
  34. Li N., Chen S., Zhou X. et al.: Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. - Aquat. Bot. 88: 303-310, 2008. Go to original source...
  35. Lin G., Sternberg L.S.L.: Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). - Aust. J. Plant Physiol. 19: 509-517, 1992. Go to original source...
  36. López-Hoffman L., DeNoyer J.L., Monroe I.E. et al.: Mangrove seedling net photosynthesis, growth, and survivorship are interactively affected by salinity and light. - Biotropica 38: 606-616, 2006.
  37. Lovelock C.E., Feller I.C.: Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. - Oecologia 134: 455-462, 2003. Go to original source...
  38. Lovelock C.E., Reef R., Ball M.C.: Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. - Hydrobiologia 803: 133-145, 2017.
  39. Martin K.C., Bruhn D., Lovelock C.E. et al.: Nitrogen fertilization enhances water-use efficiency in a saline environment. - Plant Cell Environ. 33: 344-357, 2010.
  40. Mathur S., Mehta P., Jajoo A., Bharti S.: Analysis of elevated temperature induced inhibition of photosystem II using Chl a fluorescence induction kinetics. - Plant Biol. 13: 1-6, 2011.
  41. Medina E., García V., Cuevas E.: Sclerophylly and oligotrophic environments: Relationships between leaf structure, mineral nutrient content and drought resistance in tropical rain forests of the upper Rio Negro Region. - Biotropica 22: 51-64, 1990.
  42. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. - BBA-Bioenergetics 1767: 414-421, 2007. Go to original source...
  43. Nagelkerken I., van der Velde G.: Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? - Mar. Ecol. Prog. Ser. 274: 143-151, 2004. Go to original source...
  44. Naidoo G.: Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. - Trees 24: 667-673, 2010.
  45. Naidoo G., Hiralal O., Naidoo Y.: Hypersalinity effects on leaf ultrastructure and physiology in the mangrove Avicennia marina. - Flora 206: 814-820, 2011.
  46. Naidoo G., Tuffers A.V., von Willert D.J.: Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. - Trees 16: 140-146, 2002. Go to original source...
  47. Nóbrega N.E.F., Silva J.G.F., Ramos H.E.A., Pagung F.S.: [Water balance climatic and climatic classification of Thornthwaite and Köppen for the São Mateus - ES.] - In: National irrigation and drainage congress, São Mateus/ES, 2008. Available at: https://biblioteca.incaper.es.gov.br/digital/bitstream/item/248/1/1569-sao-mateus.pdf. [In Portuguese]
  48. Öquist G., Chow W.S., Anderson J.M.: Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. - Planta 186: 450-460, 1992. Go to original source...
  49. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Corre-lation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  50. Oukarroum A., Madidi S.E.L., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  51. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  52. Panda D., Dash P.K., Dhal N.K., Rout N.C.: Chlorophyll fluorescence parameters and chlorophyll content in mangrove species grown in different salinity. - Gen. Appl. Plant Physiol. 32: 175-180, 2006.
  53. Parida A.K., Das A.B., Mittra B.: Effects of NaCl stress on the structure, pigment complex composition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. - Photosynthetica 41: 191-200, 2003.
  54. Parida A.K., Das A.B., Mohanty P.: Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. - Plant Growth Regul. 42: 213-226, 2004.
  55. Petri D.J.C., Bernini E., Souza L.M.: [Species distribution and structure of mangrove of the Benevente River, Anchieta, ES.] -Biota Neotrop. 11: 107-116, 2011. [In Portuguese] Go to original source...
  56. Redillas M.C.F.R., Strasser R.J., Jeong J.S. et al.: The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. - Plant Biotechnol. Rep. 5: 169-175, 2011. Go to original source...
  57. Reef R., Lovelock C.E.: Regulation of water balance in mangroves. - Ann. Bot.-London 115: 385-395, 2015. Go to original source...
  58. Schaeffer-Novelli Y., Cintrón-Molero G., Adaime R.R., de Camargo T.M.: Variability of mangrove ecosystems along the Brazilian coast. - Estuaries 13: 204-218, 1990.
  59. Scholander P.F.: How mangroves desalinate water. - Physiol. Plantarum 21: 251-261, 1968.
  60. Silva M.A.B., Bernini E., Carmo T.M.S.: [Structural charac-teristics of the mangrove forests at São Mateus River Estuary, Espírito Santo State, Brazil.] - Acta Bot. Bras. 19: 465-471, 2005. [In Portuguese] Go to original source...
  61. Smit M.F., van Heerden P.D.R., Pienaar J.J. et al.: Effect of trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on Phaseolus vulgaris and Zea mays. - Plant Physiol. Bioch. 47: 623-634, 2009.
  62. Soares M.L.G., Tognella M.M.P., Cuevas E. et al.: Photosynthetic capacity and intrinsic water-use efficiency of Rhizophora mangle at its southernmost western Atlantic range. - Photosynthetica 53: 464-470, 2015. Go to original source...
  63. Sobrado M.A.: Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. - Trees 18: 422-427, 2004.
  64. Sobrado M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. - Photosynthetica 43: 217-221, 2005. Go to original source...
  65. Sobrado M.A., Ball M.C.: Light use in relation to carbon gain in the mangrove, Avicennia marina, under hypersaline conditions. - Aust. J. Plant Physiol. 26: 245-251, 1999. Go to original source...
  66. Srivastava A., Guissé B., Greppin H., Strasser R.J.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probe by fast polyphasic chlorophyll a fluorescence transient: OKJIP. - BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
  67. Strasser B.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  68. Strasser R.J., Stirbet A.D.: Estimation of the energetic con-nectivity of PS II centres in plants using the fluorescence rise O-J-I-P: Fitting of experimental data to three different PS II models. - Math. Comput. Simulat. 56: 451-462, 2001.
  69. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004.
  70. Takemura T., Hanagata N., Sugihara K. et al.: Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. - Aquat. Bot. 68: 15-28, 2000.
  71. Tanaka R., Tanaka A.: Tetrapyrrole biosynthesis in higher plants. - Annu. Rev. Plant Biol. 58: 321-346, 2007. Go to original source...
  72. Tomek P., Lazár D., Ilík P., Nauš J.: On intermediate steps between the O and P steps in chlorophyll a fluorescence rise measure at different intensities of exciting light. - Aust. J. Plant Physiol. 28: 1151-1160, 2001.
  73. Tuteja N.: Mechanisms of high salinity tolerance in plants. - Method. Enzymol. 428: 419-438, 2007. Go to original source...
  74. Wang L., Pan D., Li F. et al.: Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. - Plant Sci. 231: 159-172, 2015. Go to original source...
  75. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  76. Zamprogno G.C., Tognella M.M.P.T., Quaresma V.S. et al.: The structural heterogeneity of an urbanised mangrove forest area in southeastern Brazil: Influence of environmental factors and anthropogenic stressors. - Braz. J. Oceanogr. 64: 157-172, 2016. Go to original source...
  77. Zhang J.L., Shi H.: Physiological and molecular mechanisms of plant salt tolerance. - Photosynth. Res. 115: 1-22, 2013.
  78. Zhu Z., Chen J., Zheng H.L.: Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. - Tree Physiol. 32: 1378-1388, 2012. Go to original source...
  79. Zlatev Z.S., Yordanov I.T.: Effects of soil drought on photo-synthesis and chlorophyll fluorescence in bean plants. - Bulg. J. Plant Physiol. 30: 3-18, 2004.
  80. Zushi K., Matsuzoe N.: Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. - Sci. Hortic.-Amsterdam 219: 216-221, 2017.