Photosynthetica 2019, 57(1):320-331 | DOI: 10.32615/ps.2019.034

Transcriptome analysis revealed the effect of a combination of red and blue LEDs on photosynthesis, chlorophyll and carotenoid biosynthesis in Brassica campestris L.

T. ZHANG, Y.Y. SHI, F.Z. PIAO, N.S. DU, Z.Q. SUN
College of Horticulture, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, China

Here, we analyzed the transcriptomes of Brassica campestris L. ssp. chinensis Makino under the treatment of a combination of red (R) and blue (B) light. In total, 5,643 differentially expressed genes (DEGs) were found under the R and B combination compared with the white light. An analysis of the DEGs enriched in photosynthesis and antenna proteins showed that there were many more upregulated subunits in PSII than those in PSI. The DEGs encoding the cytochrome b6f complex, photosynthetic electron transport, ATP synthases, and key genes involved in chlorophyll (Chl) and carotenoids (Car) biosynthesis were also upregulated. In addition, real-time PCR indicated that 13 of 15 genes showed the similar expression patterns with the RNA-seq data. The R and B combination might promote photosynthesis by specifically regulating Chl biosynthesis, thus accelerating the growth and development of plants and providing a valuable reference for vegetable production in factories and variety breeding.

Keywords: light-emitting diodes, non-heading Chinese cabbage, PSII, PSI, RNA sequencing.

Received: January 5, 2018; Accepted: August 1, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, T., SHI, Y.Y., PIAO, F.Z., DU, N.S., & SUN, Z.Q. (2019). Transcriptome analysis revealed the effect of a combination of red and blue LEDs on photosynthesis, chlorophyll and carotenoid biosynthesis in Brassica campestris L. Photosynthetica57(1), 320-331. doi: 10.32615/ps.2019.034.
Download citation

Supplementary files

Download file1871 Fig.1S.jpg

File size: 673.93 kB

Download file1871 Fig.3S.jpg

File size: 470.77 kB

Download file1871 Fig.4S.jpg

File size: 736 kB

Download file1871 Fig.2S.jpg

File size: 552.58 kB

Download file1871 Table 2S.docx

File size: 13.92 kB

Download file1871 Table 4S.docx

File size: 15.45 kB

Download file1871 Table 1S.docx

File size: 16.51 kB

Download file1871 Table 5S.docx

File size: 13.98 kB

Download file1871 Table 3S.docx

File size: 13.83 kB

References

  1. Ahn T.K., Avenson T.J., Ballottari M. et al.: Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. - Science 320: 794-797, 2008. Go to original source...
  2. Acock B., Charles-Edwards D.A., Fitter D.J. et al.: The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of two canopy models. - J. Exp. Bot. 29: 815-827, 1978. Go to original source...
  3. Anders S., Huber W.: Differential expression analysis for sequence count data. - Genome Biol. 11: R106, 2010. Go to original source...
  4. Armstrong G.A., Hearst J.E.: Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. - FASEB J. 10: 228-237, 1996.
  5. Aksenova N.P., Konstantinova T.N., Sergeeva L.I. et al.: Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. - J. Plant Growth Regul. 13: 143, 1994. Go to original source...
  6. Arnon D.I.: Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24:1-15, 1949. Go to original source...
  7. Appelgren M.: Effects of light quality on stem elongation of Pelargonium in vitro. - Sci. Hortic.-Amsterdam 45: 345-351, 1991. Go to original source...
  8. Arve L.E., Terfa M.T., Gislerød H.R. et al.: High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. - Plant Cell Environ. 36: 382-392, 2013. Go to original source...
  9. Bollivar D.W.: Recent advances in chlorophyll biosynthesis. - Photosynth. Res. 90: 173-194, 2006.
  10. Caffarri S., Tibiletti T., Jennings R.C. et al.: A comparison between plant photosystem I and photosystem II architecture and functioning. - Curr. Protein Pept. Sci. 15: 296-331, 2014. Go to original source...
  11. Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. - Annu. Rev. Biochem. 83: 317-340, 2014. Go to original source...
  12. Christie J.M.: Phototropin blue-light receptors. - Annu. Rev. Plant Biol. 58: 21-45, 2007. Go to original source...
  13. Corré W.J.: Growth and morphogenesis of sun and shade plants. I. The influence of light intensity. - Acta Bot. Neerl. 32: 49-62, 1983. Go to original source...
  14. Cosgrove D.J.: Photomodulation of growth. - In: Kendrick R.E., Kronenberg G.H.M. (ed.): Photomorphogenesis in Plants. Pp. 341-366. Dr W. Junk Publ., Dordrecht 1986. Go to original source...
  15. Eberhard S., Finazzi G., Wollman F.A.: The dynamics of photosynthesis. - Annu. Rev. Genet. 42: 463-515, 2008. Go to original source...
  16. Eggink L., LoBrutto R., Brune D.C. et al.: Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. - BMC Plant Biol. 4: 5, 2004. Go to original source...
  17. Galvez-Valdivieso G., Fryer M.J., Lawson T. et al.: The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. - Plant Cell 21: 2143-2162, 2009. Go to original source...
  18. Ghassemian M., Lutes J., Tepperman J. et al.: Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. - Arch. Biochem. Biophys. 448: 45-59, 2006. Go to original source...
  19. Green B.R., Durnford D.G.: The chlorophyll-carotenoid proteins of oxygenic photosynthesis. - Annu. Rev. Plant Phys. 47: 685-714, 1996. Go to original source...
  20. Grossman A.R., Bhaya D., Apt K.E. et al.: Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. - Annu. Rev. Genet. 29: 231-288, 1995. Go to original source...
  21. Hayashi M., Kinoshita T.: Crosstalk between blue-light- and ABA-signaling pathways in stomatal guard cells. - Plant Signal Behav. 6: 1662-1664, 2011. Go to original source...
  22. Hernández R., Kubota C.: Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. - Environ. Exp. Bot. 121: 66-74, 2016 Go to original source...
  23. Heyes D.J., Hardman S.J., Mansell D. et al.: Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase. - PLoS ONE 7: e45642, 2012. Go to original source...
  24. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. - J. Exp. Bot. 61: 3107-3117, 2010. Go to original source...
  25. Inoue S., Kinoshita T., Matsumoto M. et al.: Blue light-induced autophosphorylation of phototropin is a primary step for signaling. - P. Natl. Acad. Sci. USA 105: 5626-5631, 2008. Go to original source...
  26. Love M.I., Huber W., Anders S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. - Genome Biol. 15: 550, 2014. Go to original source...
  27. Johkan M., Shoji K., Goto F. et al.: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. - HortScience 45:1809-1814, 2010.
  28. Kaiser E., Morales A., Harbinson J. et al.: Dynamic photosynthesis in different environmental conditions. - J. Exp. Bot. 66: 2415-2426, 2015. Go to original source...
  29. Kanehisa M., Araki M., Goto S. et al.: KEGG for linking genomes to life and the environment. - Nucleic Acids Res. 36: D480-D484, 2008.
  30. Kim D., Langmead B., Salzberg S.L.: HISAT: a fast spliced aligner with low memory requirements. - Nat. Methods 12: 357-360, 2015. Go to original source...
  31. Kim S.J., Hahn E.J., Heo J.W. et al.: Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. - Sci. Hortic. 101: 143-151, 2004. Go to original source...
  32. Latowski D., Kuczyńska P., Strzałka K.: Xanthophyll cycle-a mechanism protecting plants against oxidative stress. - Redox Rep. 16: 78-90, 2011. Go to original source...
  33. Li H.M., Lu X.M.: Effects of light quality on flowering, dynamic variation in physiological characteristics of pakchoi during budding and flowering stages. - Acta Bot. Boreal.-Occident. Sin. 36: 0730-0737, 2016. [In Chinese]
  34. Li H.M., Tang C.M., Xu Z.G.: The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. - Sci. Hortic.-Amsterdam 150: 117-124, 2013.
  35. Liu X.Y., Chang T.T., Guo S.R. et al.: Effect of diferent light quality of LED on growth and photosynthetic cheracter in cherry tomato seedling. - Acta Hortic. 907: 325-330, 2011. Go to original source...
  36. Livaka K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. - Methods 25: 402-408, 2001. Go to original source...
  37. Love M.I., Huber W., Anders S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. - Genome Biol. 15: 550, 2014. Go to original source...
  38. Mao X., Cai T., Olyarchuk J.G., Wei L.: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. - Bioinformatics 21: 3787-3793, 2005. Go to original source...
  39. McDonald M.S.: Photobiology of higher plants. - In: McDonald M.S. (ed.): Photosynthesis-Physiological and Environmental Factors. Pp. 62-68. W. John & Sons Ltd. Publ., London 2003.
  40. Nanya K., Ishigami Y., Hikosaka S. et al.: Effects of blue and red light on stem elongation and flowering of tomato seedlings. - Acta Hortic. 956: 264-266, 2012. Go to original source...
  41. Nelson N., Yocum C.F.: Structure and function of photosystems I and II. - Annu. Rev. Plant Biol. 57: 521-565, 2006. Go to original source...
  42. Nhut D.T., Takamura T., Watanabe H. et al.: Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). - Plant Cell Tiss. Org. Cult. 73: 43-52, 2003. Go to original source...
  43. Pertea, M., Kim, D., Pertea, G. et al.: Transcript-level expression analysis of rna-seq experiments with hisat, stringtie and ballgown. - Nat. Protoc. 11: 1650-667, 2016. Go to original source...
  44. Pimputkar S., Speck J.S., DenBaars S.P. et al.: Prospects for LED lighting. - Nat. Photonics 3: 180-182, 2009. Go to original source...
  45. Reinbothe C., El-Bakkouri M., Buhr F. et al.: Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. - Trends Plant Sci. 15: 614-624, 2010. Go to original source...
  46. Rowe J.D., Griffiths W.T.: Protochlorophyllide reductase in photosynthetic prokaryotes and its role in chlorophyll synthesis. - Biochem. J. 311: 417-424, 1995. Go to original source...
  47. Sæbø A., Krekling T., Appelgren M.: Light quality affects hotosynthesis and leaf anatomy of birch plantlets in vitro. - Plant Cell Tissue Organ Cult. 41: 177-185, 1995. Go to original source...
  48. Stenbaek A., Jensen P.E.: Redox regulation of chlorophyll biosynthesis. - Phytochemistry 71: 853-859, 2010. Go to original source...
  49. Sytina O.A., Heyes D.J., Hunter C.N. et al.: Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. - Nature 456: 1001-1004, 2008. Go to original source...
  50. Trapnell C., Williams B.A., Pertea G. et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. - Nat. Biotechnol. 28: 511-515,2010. Go to original source...
  51. Vasiľev S., Bruce D.: Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I. - Plant Cell 16: 3059-3068, 2004. Go to original source...
  52. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - J. Photochem. Photobiol. B 96: 30-37, 2009. Go to original source...
  53. Wang J., Lu W., Tong Y.X., Yang Q.C.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. - Front. Plant Sci. 7: 250, 2016. Go to original source...
  54. Wang P., Grimm B.: Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. - Photosynth. Res. 126: 189-202, 2015. Go to original source...
  55. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. - Photosynthetica 53: 213-222, 2015. Go to original source...
  56. Wollaeger H.M., Runkle E.S.: Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. - HortScience 49: 734-740, 2014. Go to original source...
  57. Xu D., Li J., Gangappa S.N. et al.: Convergence of light and ABA signaling on the ABI5 promoter. - PLoS Genet. 10: e1004197, 2014. Go to original source...
  58. Young M.D., Wakefield M.J., Smyth G.K. et al.: Gene ontology analysis for RNA-seq: accounting for selection bias. - Genome Biol. 11: R14, 2010. Go to original source...