Photosynthetica 2018, 56(1):163-177 | DOI: 10.1007/s11099-018-0769-9

Early emergence of the FtsH proteases involved in photosystem II repair

S. Shao1, T. Cardona1, P. J. Nixon1,*
1 Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London, UK

Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry.

Keywords: AAA+ protease; chloroplast; cyanobacteria; evolution; photoprotection; water oxidation

Received: June 8, 2017; Accepted: September 1, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shao, S., Cardona, T., & Nixon, P.J. (2018). Early emergence of the FtsH proteases involved in photosystem II repair. Photosynthetica56(1), 163-177. doi: 10.1007/s11099-018-0769-9.
Download citation

Supplementary files

Download filephs-201801-0014_S1.pdf

File size: 70.45 kB

References

  1. Arlt H., Tauer R., Feldmann H. et al.: The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria.-Cell 85: 875-885, 1996. Go to original source...
  2. Bailey S., Silva P., Nixon P. et al.: Auxiliary functions in photosynthesis: the role of the FtsH protease.-Biochem. Soc. Trans. 29: 455-459, 2001. Go to original source...
  3. Bailey S., Thompson E., Nixon P.J. et al: A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo.-J. Biol. Chem. 277: 2006-2011, 2002.
  4. Baker M.J., Tatsuta T., Langer T.: Quality control of mitochondrial proteostasis.-CSH Perspect. Biol. 3: 1-19, 2011. Go to original source...
  5. Battistuzzi F.U., Hedges S.B.: A major clade of prokaryotes with ancient adaptations to life on land.-Mol. Biol. Evol. 26: 335-343, 2009. Go to original source...
  6. Beanland T.J.: Evolutionary relationships between "Q-type" photosynthetic reaction centres: Hypothesis-testing using parsimony.-J. Theor. Biol. 145: 535-545, 1990. Go to original source...
  7. Becková M., Yu J., Krynická V. et al.: Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria.-Philos. T. R. Soc. B 372:1730, 2017.
  8. Bengtson S., Sallstedt T., Belivanova V. et al.: Threedimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae.-PLoS Biol. 15: e2000735, 2017. Go to original source...
  9. Bhaya D., Grossman A.R., Steunou A.-S. et al.: Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses.-ISME J. 1: 703-713, 2007. Go to original source...
  10. Bieniossek C., Niederhauser B., Baumann U.M.: The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation.-P. Natl. Acad. Sci. USA 106: 21579-21584, 2009. Go to original source...
  11. Bieniossek C., Schalch T., Bumann M. et al.: The molecular architecture of the metalloprotease FtsH.-P. Natl. Acad. Sci. USA 103: 3066-3071, 2006. Go to original source...
  12. Bittner L.M., Arends J., Narberhaus F.: When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli.-Biol. Chem. 398: 625-635, 2017. Go to original source...
  13. Boehm M., Yu J., Krynicka V. et al.: Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in Photosystem II repair.-Plant Cell 24: 3669-3683, 2012. Go to original source...
  14. Bombar D., Heller P., Sanchez-Baracaldo P. et al.: Comparative genomics reveals surprising divergence of two closely related strains of uncultivated UCYN-A cyanobacteria.-ISME J. 8: 2530-2542, 2014. Go to original source...
  15. Brocks J.J., Love G.D., Summons R.E. et al.: Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea.-Nature 437: 866-870, 2005. Go to original source...
  16. Bryant D.A., Costas A.M.G., Maresca J.A. et al.: Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium.-Science 317: 523-526, 2007. Go to original source...
  17. Bryant D.A., Liu Z., Li T. et al.: Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, Acidobacteria.-In: Burnap R.L., Vermaas W. (ed.): Functional Genomics and Evolution of Photosynthetic Systems. Pp. 47-102. Springer, Dordrecht 2012. Go to original source...
  18. Butterfield N.J.: Early evolution of the Eukaryota.-Palaeontology 58: 5-17, 2015. Go to original source...
  19. Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T.: trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses.-Bioinformatics 25: 1972-1973, 2009.
  20. Cardona T.: A fresh look at the evolution and diversification of photochemical reaction centers.-Photosynth. Res. 126: 111-134, 2015. Go to original source...
  21. Cardona T.: Origin of bacteriochlorophyll a and the early diversification of photosynthesis.-PLoS ONE 11: e0151250, 2016a. Go to original source...
  22. Cardona T.: Photosystem II is a chimera of reaction centers.-J. Mol. Evol. 84: 149-151, 2017. Go to original source...
  23. Cardona T.: Reconstructing the origin of oxygenic photosynthesis: Do assembly and photoactivation recapitulate evolution?-Front. Plant Sci. 7: 257, 2016b. Go to original source...
  24. Cardona T., Sánchez-Baracaldo P., Rutherford A.W. et al.: Molecular evidence for the early evolution of photosynthetic water oxidation.-bioRxiv: https://doi.org/10.1101/109447, 2017. Go to original source...
  25. Chen J., Burke J.J., Velten J. et al.: FtsH11 protease plays a critical role in Arabidopsis thermotolerance.-Plant J. 48: 73-84, 2006. Go to original source...
  26. Cheregi O., Sicora C., Kós P.B. et al.: The role of the FtsH and Deg proteases in the repair of UV-B radiation-damaged Photosystem II in the cyanobacterium Synechocystis PCC 6803.-BBA-Bioenergetics 1767: 820-828, 2007. Go to original source...
  27. Ciccarelli F.D., Doerks T., von Mering C. et al.: Toward automatic reconstruction of a highly resolved tree of life.-Science 311: 1283-1287, 2006. Go to original source...
  28. Cole J.K., Hutchison J.R., Renslow R.S. et al.: Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotrophheterotroph interactions.-Front. Microbiol. 5: 109, 2014. Go to original source...
  29. Crowe S.A., Jones C., Katsev S. et al.: Photoferrotrophs thrive in an Archean Ocean analogue.-P. Natl. Acad. Sci. USA 105: 15938-15943, 2008. Go to original source...
  30. Dagan T., Roettger M., Stucken K. et al.: Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.-Genome Biol. Evol. 5: 31-44, 2013. Go to original source...
  31. David L.A., Alm E.J.: Rapid evolutionary innovation during an Archaean genetic expansion.-Nature 469: 93-96, 2011. Go to original source...
  32. Dutilh B.E., Snel B., Ettema T.J.G. et al.: Signature genes as a phylogenomic tool.-Mol. Biol. Evol. 25: 1659-1667, 2008. Go to original source...
  33. Dvořák P., Casamatta D.A., Poulíčková A. et al.: Synechococcus: 3 billion years of global dominance.-Mol. Ecol. 23: 5538-5551, 2014.
  34. Dvořák P., Hindák F., Hašler P. et al.: Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Chroococcales).-Phytotaxa 170: 24-34, 2011. Go to original source...
  35. Eddy S.R.: Accelerated profile HMM searches.-PLoS Comput. Biol. 7: e1002195, 2011. Go to original source...
  36. Ferro M., Brugière S., Salvi D. et al.: AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.-Mol. Cell. Proteomics 9: 1063-1084, 2010. Go to original source...
  37. Finn R.D., Coggill P., Eberhardt R.Y. et al.: The Pfam protein families database: towards a more sustainable future.-Nucleic Acids Res. 44: D279-D285, 2016. Go to original source...
  38. Fischer W.W., Hemp J., Johnson J.E.: Evolution of oxygenic photosynthesis.-Annu. Rev. Earth Pl. Sc. 44: 647-683, 2016. Go to original source...
  39. Frickey T., Lupas A.N.: Phylogenetic analysis of AAA proteins.-J. Struct. Biol. 146: 2-10, 2004. Go to original source...
  40. Greening C., Carere C.R., Rushton-Green R. et al.: Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.-P. Natl. Acad. Sci. USA 112: 10497-10502, 2015. Go to original source...
  41. Guindon S., Dufayard J.F., Lefort V. et al.: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0.-Syst. Biol. 59: 307-321, 2010. Go to original source...
  42. Gupta R.S., Lorenzini E.: Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species.-BMC Evol. Biol. 7: 71, 2007.
  43. Harel A., Karkar S., Cheng S. et al.: Deciphering primordial cyanobacterial genome functions from protein network analysis.-Curr. Biol. 25: 628-634, 2015. Go to original source...
  44. Heazlewood J.L., Tonti-Filippini J.S., Gout A.M. et al.: Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, indicates plantspecific mitochondrial proteins.-Plant Cell 16: 241-256, 2004. Go to original source...
  45. Hilton J.A., Foster R.A., Tripp H.J. et al.: Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont.-Nat. Commun. 4: 1767, 2013. Go to original source...
  46. Hohmann-Marriott M.F., Blankenship R.E.: Evolution of photosynthesis.-Annu. Rev. Plant Biol. 62: 515-548, 2011. Go to original source...
  47. Hug L.A., Baker B.J., Anantharaman K. et al: A new view of the tree of life.-Nat. Microbiol. 1: 16048, 2016. Go to original source...
  48. Iyer L.M., Leipe D.D., Koonin E. V. et al.: Evolutionary history and higher order classification of AAA+ ATPases.-J. Struct. Biol. 146: 11-31, 2004. Go to original source...
  49. Jun S.-R., Sims G.E., Wu G.A. et al.: Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution.-P. Natl. Acad. Sci. USA 107: 133-138, 2010. Go to original source...
  50. Kadirjan-Kalbach D.K., Yoder D.W., Ruckle M.E. et al.: FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division.-Plant J. 72: 856-867, 2012. Go to original source...
  51. Kato Y., Sakamoto W.: Protein quality control in chloroplasts: A current model of D1 protein degradation in the photosystem II repair cycle.-J. Biochem. 146: 463-469, 2009. Go to original source...
  52. Kirstein J., Molière N., Dougan D.A. et al.: Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.-Nat. Rev. Microbiol. 7: 589-599, 2009. Go to original source...
  53. Komárek J., Kaštovský J., Mareš J. et al.: Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach.-Preslia 86: 295-335, 2014.
  54. Komenda J., Barker M., Kuviková S. et al.: The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803.-J. Biol. Chem. 281: 1145-1151, 2006. Go to original source...
  55. Komenda J., Hassan H.A.G., Diner B.A. et al.: Degradation of the photosystem II D1 and D2 proteins in different strains of the cyanobacterium Synechocytis PCC 6803 varying with respect to the type and level of psbA transcript.-Plant Mol. Biol. 42: 635-645, 2000. Go to original source...
  56. Komenda J., Knoppová J., Krynická V. et al.: Role of FtsH2 in the repair of Photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn4 cluster.-BBA-Bioenergetics 1797: 566-575, 2010. Go to original source...
  57. Komenda J., Sobotka R., Nixon P.J.: Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria.-Curr. Opin. Plant Biol. 15: 245-251, 2012.
  58. Komenda J., Tichý M., Prášil O. et al.: The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803.-Plant Cell 19: 2839-2854, 2007. Go to original source...
  59. Krynická V., Shao S., Nixon P.J. et al.: Accessibility controls selective degradation of photosystem II subunits by FtsH protease.-Nat. Plants 1: 15168, 2015. Go to original source...
  60. Krynická V., Tichý M., Krafl J. et al.: Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803.-Mol. Microbiol. 94: 609-624, 2014. Go to original source...
  61. Lee S., Augustin S., Tatsuta T. et al.: Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.-J. Biol. Chem. 286: 4404-4411, 2011. Go to original source...
  62. Leonhard K., Herrmann J.M., Stuart R.A. et al: AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria.-EMBO J. 15: 4218-4229, 1996. Go to original source...
  63. Letunic I., Bork P.: Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees.-Nucleic Acids Res. 44: W242-W245, 2016. Go to original source...
  64. Lu X., Zhang D., Li S. et al.: FtsHi4 is essential for embryogenesis due to its influence on chloroplast development in Arabidopsis.-PLoS ONE 9: e99741, 2014. Go to original source...
  65. Lyons T.W., Reinhard C.T., Planavsky N.J.: The rise of oxygen in Earth's early ocean and atmosphere.-Nature 506: 307-315, 2014. Go to original source...
  66. Mann N.H., Novac N., Mullineaux C.W. et al.: Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803.-FEBS Lett. 479: 72-77, 2000. Go to original source...
  67. Marin J., Battistuzzi F.U., Brown A.C. et al.: The timetree of prokaryotes: new insights into their evolution and speciation.-Mol. Biol. Evol. 34: 437-446, 2017.
  68. Mistry J., Finn R.D., Eddy S.R. et al.: Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions.-Nucleic Acids Res. 41: e121, 2013. Go to original source...
  69. Mix L.J., Haig D., Cavanaugh C.M.: Phylogenetic analyses of the core antenna domain: Investigating the origin of photosystem I.-J. Mol. Evol. 60: 153-163, 2005. Go to original source...
  70. Mulkidjanian A.Y., Koonin E. V., Makarova K.S. et al.: The cyanobacterial genome core and the origin of photosynthesis.-P. Natl. Acad. Sci. USA 103: 13126-13131, 2006. Go to original source...
  71. Nei M., Gu X., Sitnikova T.: Evolution by the birth-and-death process in multigene families of the vertebrate immune system.-P. Natl. Acad. Sci. USA 94: 7799-7806, 1997. Go to original source...
  72. Nei M., Rooney A.P.: Concerted and birth-and-death evolution of multigene families.-Annu. Rev. Genet. 39: 121-152, 2005. Go to original source...
  73. Nishimura K., Kato Y., Sakamoto W.: Chloroplast proteases: updates on proteolysis within and across suborganellar compartments.-Plant Physiol. 171: 2280-2293, 2016. Go to original source...
  74. Nitschke W., William Rutherford A.: Photosynthetic reaction centres: variations on a common structural theme?-Trends Biochem. Sci. 16: 241-245, 1991.
  75. Piechota J., Kolodziejczak M., Juszczak I. et al.: Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana.-J. Biol. Chem. 285: 12512-12521, 2010. Go to original source...
  76. Pittis A.A., Gabaldón T.: Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry.-Nature 531: 101-104, 2016. Go to original source...
  77. Ponce-Toledo R.I., Deschamps P., López-García P. et al.: An early-branching freshwater cyanobacterium at the origin of plastids.-Curr. Biol. 27: 386-391, 2017. Go to original source...
  78. Quaiser A., Ochsenreiter T., Lanz C. et al.: Acidobacteria form a coherent but highly diverse group within the bacterial domain: Evidence from environmental genomics.-Mol. Microbiol. 50: 563-575, 2003. Go to original source...
  79. Rainey R.N., Glavin J.D., Chen H.-W. et al: A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space.-Mol. Cell. Biol. 26: 8488-8497, 2006. Go to original source...
  80. Rexroth S., Mullineaux C.W., Ellinger D. et al.: The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains.-Plant Cell 23: 2379-2390, 2011. Go to original source...
  81. Rinke C., Schwientek P., Sczyrba A. et al.: Insights into the phylogeny and coding potential of microbial dark matter.-Nature 499: 431-437, 2013. Go to original source...
  82. Sacharz J., Bryan S.J., Yu J. et al.: Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes.-Mol. Microbiol. 96: 448-462, 2015. Go to original source...
  83. Sakamoto W., Zaltsman A., Adam Z. et al.: Coordinated regulation and complex formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes.-Plant Cell 15: 2843-2855, 2003. Go to original source...
  84. Sedaghatmehr M., Mueller-Roeber B., Balazadeh S.: The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.-Nat. Commun. 7: 12439, 2016. Go to original source...
  85. Segata N., Börnigen D., Morgan X.C. et al.: PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes.-Nat. Commun. 4: 2304, 2013. Go to original source...
  86. Smakowska E., Czarna M., Janska H.: Mitochondrial ATPdependent proteases in protection against accumulation of carbonylated proteins.-Mitochondrion 19: 245-251, 2014. Go to original source...
  87. Shimodaira H., Hasegawa M.: Multiple comparisons of loglikelihoods with applications to phylogenetic inference.-Mol. Biol. Evol. 16: 1114-1116, 1999. Go to original source...
  88. Silva P., Thompson E., Bailey S. et al.: FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803.-Plant Cell 15: 2152-2164, 2003. Go to original source...
  89. Snider J., Thibault G., Houry W.A.: The AAA+ superfamily of functionally diverse proteins.-Genome Biol. 9: 216, 2008. Go to original source...
  90. Sousa F.L., Shavit-Grievink L., Allen J.F. et al.: Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.-Genome Biol. Evol. 5: 200-216, 2013. Go to original source...
  91. Steglich G., Neupert W., Langer T.: Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria.-Mol. Cell. Biol. 19: 3435-3442, 1999.
  92. Stirnberg M., Fulda S., Huckauf J. et al.: Osmoregulation in Synechocystis sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis.-Mol. Microbiol. 63: 86-102, 2007. Go to original source...
  93. Suno R., Niwa H., Tsuchiya D. et al.: Structure of the whole cytosolic region of ATP-dependent protease FtsH.-Mol. Cell 22: 575-585, 2006. Go to original source...
  94. Suno R., Shimoyama M., Abe A. et al.: Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH.-FEBS Lett.5 586: 3117-3121, 2012. Go to original source...
  95. Takahashi S., Badger M.R.: Photoprotection in plants: A new light on photosystem II damage.-Trends Plant Sci. 16: 53-60, 2011. Go to original source...
  96. Tice M.M., Lowe D.R.: Photosynthetic microbial mats in the 3,416-Myr-old ocean.-Nature 431: 549-552, 2004. Go to original source...
  97. Tomoyasu T., Yamanaka K., Murata K. et al.: Topology and subcellular localization of FtsH protein in Escherichia coli.-J. Bacteriol. 175: 1352-1357, 1993. Go to original source...
  98. Urantowka A., Knorpp C., Olczak T. et al.: Plant mitochondria contain at least two i-AAA-like complexes.-Plant Mol. Biol. 59: 239-252, 2005. Go to original source...
  99. Vostrukhina M., Popov A., Brunstein E. et al.: The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer.-Acta Crystallogr. D 71: 1307-1318, 2015.
  100. Wagner R., Aigner H., Funk C.: FtsH proteases located in the plant chloroplast.-Physiol. Plantarum 145: 203-214, 2012. Go to original source...
  101. Wagner R., Aigner H., Pružinská A. et al.: Fitness analyses of Arabidopsis thaliana mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling.-New Phytol. 191: 449-458, 2011. Go to original source...
  102. Ward N.L., Challacombe J.F., Janssen P.H. et al.: Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils.-Appl. Environ. Microbiol. 75: 2046-2056, 2009. Go to original source...
  103. Wu M., Eisen J.A.: A simple, fast, accurate method of phylogenomic inference.-Genome Biol. 9: R151, 2008. Go to original source...
  104. Yamada-Inagawa T., Okuno T., Karata K. et al.: Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis.-J. Biol. Chem. 278: 50182-50187, 2003. Go to original source...
  105. Yamada K.D., Tomii K., Katoh K.: Application of the MAFFT sequence alignment program to large data - Reexamination of the usefulness of chained guide trees.-Bioinformatics 32: 3246-3251, 2016. Go to original source...
  106. Yu F.: Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes.-Plant Physiol. 138: 1957-1966, 2005. Go to original source...
  107. Yu F., Park S., Rodermel S.R.: The Arabidopsis FtsH metalloprotease gene family: Interchangeability of subunits in chloroplast oligomeric complexes.-Plant J. 37: 864-876, 2004. Go to original source...
  108. Zakon H.H.: Convergent evolution on the molecular level.-Brain. Behav. Evol. 59: 250-261, 2002. Go to original source...
  109. Zaltsman A., Ori N., Adam Z.: Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis.-Plant Cell 17: 2782-2790, 2005. Go to original source...
  110. Zehr J.P., Bench S.R., Carter B.J. et al.: Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II.-Science 322: 1110-1112, 2008. Go to original source...
  111. Zelisko A., García-Lorenzo M., Jackowski G. et al.: AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence.-P. Natl. Acad. Sci. USA 102: 13699-13704, 2005. Go to original source...
  112. Zeng Y., Feng F., Medová H. et al.: Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes.-P. Natl. Acad. Sci. USA 111: 7795-7800, 2014. Go to original source...