Photosynthetica 2010, 48(3):323-331 | DOI: 10.1007/s11099-010-0042-3

Comparison of parameters estimated from A/Ci and A/Cc curve analysis

W. Zeng1,2, G. S. Zhou1,3,*, B. R. Jia1, Y. L. Jiang1, Y. Wang1,2
1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
2 Graduate University of Chinese Academy of Sciences, Beijing, China
3 Chinese Academy of Meteorological Sciences, Beijing, China

The parameters estimated from traditional A/C i curve analysis are dependent upon some underlying assumptions that substomatal CO2 concentration (C i) equals the chloroplast CO2 concentration (C c) and the C i value at which the A/C i curve switches between Rubisco- and electron transport-limited portions of the curve (C i-t) is set to a constant. However, the assumptions reduced the accuracy of parameter estimation significantly without taking the influence of C i-t value and mesophyll conductance (g m) on parameters into account. Based on the analysis of Larix gmelinii's A/C i curves, it showed the C i-t value varied significantly, ranging from 24 Pa to 72 Pa and averaging 38 Pa. t-test demonstrated there were significant differences in parameters respectively estimated from A/C i and A/C c curve analysis (p<0.01). Compared with the maximum ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), the maximum electron transport rate (Jmax) and Jmax/Vcmax estimated from A/C c curve analysis which considers the effects of g m limit and simultaneously fits parameters with the whole A/C c curve, mean Vcmax estimated from A/C i curve analysis (Vcmax-C i) was underestimated by 37.49%; mean Jmax estimated from A/C i curve analysis (Jmax-C i) was overestimated by 17.8% and (Jmax-C i)/(Vcmax-C i) was overestimated by 24.2%. However, there was a significant linear relationship between Vcmax estimated from A/C i curve analysis and Vcmax estimated from A/C c curve analysis, so was it Jmax (p<0.05).

Keywords: A, Ci curve analysis; A, Cc curve analysis; mesophyll conductance; parameter estimation; photosynthesis

Received: September 8, 2009; Accepted: May 4, 2010; Published: September 1, 2010Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zeng, W., Zhou, G.S., Jia, B.R., Jiang, Y.L., & Wang, Y. (2010). Comparison of parameters estimated from A/Ci and A/Cc curve analysis. Photosynthetica48(3), 323-331. doi: 10.1007/s11099-010-0042-3.
Download citation

References

  1. Aalto, T., Juurola, E.: A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. - Plant Cell Environ. 25: 1399-1409, 2002. Go to original source...
  2. Amthor, J.S.: Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. - Global Change Biol. 1: 243-274, 1995. Go to original source...
  3. Bazzaz, F.A.: The response of nature ecosystems to the rising global CO2 levels. - Annu. Rev. Ecol. Syst. 21: 167-196, 1990. Go to original source...
  4. Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis, A.R.,Jr, Long, S.P.: Improved temperature response functions for models of Rubisco-limited photosynthesis. - Plant Cell Environ. 24: 253-259, 2001. Go to original source...
  5. Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S., Long, S.P.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002.
  6. Bernacchi, C.J., Pimentel, C., Long, S.P.: In vivo temperature response functions of parameters required to model RuBPlimited photosynthesis. - Plant Cell Environ. 26: 1419-1430, 2003. Go to original source...
  7. Bunce, J.A.: Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. - Photosynth. Res. 63: 59-67, 2000. Go to original source...
  8. Centritto, M., Loreto, F., Chartzoulakis, K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. - Plant Cell Environ. 26: 585-594, 2003. Go to original source...
  9. Curtis, P.S., Vogel, C.S., Pregitzer, K.S., Zak, D.R., Teeri, J.A.: Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier. - New Phytologist 129: 253-263, 1995. Go to original source...
  10. De Pury, D.G.G., Farquhar, G.D.: Simple scaling of photosynthesis from leaves to simple canopies without the errors of big-leaf models. - Plant Cell Environ. 20: 537-557, 1997. Go to original source...
  11. Dubois, J.J.B., Fiscus, E.L., Booker, F.L., Flowers, M.D., Reid, C.D.: Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. - New Phytol. 176: 402-414, 2007. Go to original source...
  12. Ethier, G.J., Livingston, N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. - Plant Cell Environ. 27: 137-153, 2004. Go to original source...
  13. Evans, J.R., Loreto, F.: Acquisition and diffusion of CO2 in higher plant leaves. - In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (ed.): Photosynthesis: Physiology and Metabolism. Pp. 9-51. Kluwer Acad. Publishers, Dordrecht 2000.
  14. Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  15. Field, C.B., Avissar, R.: Bi-directional interactions between the biosphere and the atmosphere. Introduction. - Global Change Biol. 4: 459-460, 1998. Go to original source...
  16. Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. - Mededel. Landbouwhogesch. Wageningen 59: 1-68, 1959.
  17. Harley, P.C, Sharkey, T.D.: An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. - Photosyn. Res. 27: 169-178, 1991.
  18. Harley, P.C., Loreto, F., DiMarco, G., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiology 98: 1429-1436, 1992a. Go to original source...
  19. Harley, P.C., Thomas, R.B., Reynolds, J.F., Strain, B.R.: Modeling photosynthesis of cotton grown in elevated CO2. - Plant Cell Environ. 15: 271-282, 1992b. Go to original source...
  20. Keeling, C.D., Bacastow, R.B., Carter, A.F., Piper, S.C., Whorf, T.P., Heimann, M., Mook, W.G., Roeloffzen, H.: A threedimensional model of atmospheric CO2 transport based on observed winds. - In: Peterson, D.H. (ed.): Aspects of climate Variability in the Pacific and the Western Americas. Pp. 55: 165-236. J. Geophys. Res., Washington D.C. 1989. Go to original source...
  21. Larcher, W.: Physiological Plant Ecology. 2nd Ed. - Springer-Verlag, Berlin - Heidelberg - New York 1980. Go to original source...
  22. Leuning, R.: Temperature dependence of two parameters in a photosynthesis model. - Plant Cell Environ. 25: 1205-1210, 2002. Go to original source...
  23. Lloyd, J., Farquhar, G.D.: The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. - Functional Ecology 10: 4-32, 1996. Go to original source...
  24. Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  25. Long, S.P.: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? - Plant Cell Environ. 14: 729-739, 1991. Go to original source...
  26. Loreto, F., Harley, P.C., Marco, G.D., Sharkey, T.D.: Estimation of mesophyll conductance to CO2 flux by three different methods. - Plant Physiol. 98: 1437-1443, 1992. Go to original source...
  27. Manter, D.K., Kerrigan, J.: A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. - J. Exp. Bot. 55: 2581-2588, 2004. Go to original source...
  28. Medlyn, B.E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.C., Kirschbaum, M.U.F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; Wang, K.; Loustau, D.: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. - Plant Cell Environ. 25: 1167-1179, 2002. Go to original source...
  29. Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B., Vorosmarty, C.J., Schloss, A.L.: Global climate change and terrestrial net primary production. - Nature 363: 234-240, 1993. Go to original source...
  30. Miao, Z.W., Xu, M., Lathrop, R.G., Jr., Wang, Y.F.: Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation rate,potential light saturated electron transport rate and leaf dark respiration. - Plant Cell Environ. 32: 109-122, 2009. Go to original source...
  31. Mitchell, J.F.B., Manabe, S., Meleshiko, V., Tokioka, T.: Equilibrium climate change and its implications for the future. - In: Houghton, J.T., Jenkins, G.J., Ephraums, J.J. (ed.): Climate Change. Pp. 131-170. Cambridge Univ. Press, New York 1990.
  32. Monti, A., Brugnoli, E., Scartazza, A., Amaducci, M.T.: The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). - J. Exp. Bot. 57: 1253-1262, 2006. Go to original source...
  33. Niinemets, U, Cescatti, A; Rodeghiero, M; Tosens, T: Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broadleaved species. - Plant Cell Environ. 28: 1552-1566, 2005. Go to original source...
  34. Niinemets, U., Díaz-Espejo, A., Flexas, J., Galmés, J., Warren, C.R.: Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. - J. Exp. Bot. 60: 2249-2270, 2009. Go to original source...
  35. Pitman, A.J.: The evolution of, and revolution in, land surface schemes designed for climate models. - Int. J. Climatol. 23: 479-510, 2003. Go to original source...
  36. Schlesinger, M.E., Mitchell, J.F.B.: Model projections of the equilibrium climate response to increased carbon dioxid. In: MacCracken, M.C., Luther, F.M. (ed.): Projecting the Climate Effect of Increasing Carbon Dioxid. Pp. 80-147. Carbon Dioxide Res. Div., Washington 1985.
  37. Sellers, P.J., Bounoua, L., Collatz, G.J., Randall, D.A., Dazlich, D.A., Los, S.O., Berry, J.A., Fung, I., Tucker, C.J., Field, C.B., Jensen, T.G.: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. - Science 271: 1402-1406, 1996. Go to original source...
  38. Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., Collatz, G.J., Denning, A.S., Mooney, H.A., Nobre, C.A., Sato, N., Field, C.B., Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. - Science 275: 502-509, 1997. Go to original source...
  39. Sharkey, T.D.: Photosynthesis in intact leaves of C3 plant: Physics, physiology and rate limitations. - Bot. Rev. 51: 53-105, 1985. Go to original source...
  40. Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger, D., Falk, M., Chen, J., Sparks, J.P.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. - Agri. Forest Meteorol. 113: 185-222, 2002. Go to original source...
  41. von Caemmerer, S.: Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Canberra 2000. Go to original source...
  42. Wang, Y.P., Jarvis, P.G.: Description and validation of an array model - MAESTRO. - Agri. Forest Meteorol. 51: 257-280, 1990. Go to original source...
  43. Waston, R.T., Rodhe, H., Oeschger, H., Siegenthaler, U.: Greenhouse gases and aerosols. - In: Houghton, J. T., Jenkins, G. J., Ephraums, J. J. (ed.): Climate Change. Pp. 282-310. Cambridge Univ. Press, New York 1990.
  44. Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., Tappeiner, U., Cernusca, A.: Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. - Plant Cell Environ. 22: 1281-1296, 1999. Go to original source...
  45. Woodward, F.I.: Climate and plant Distribution. Cambridge University press, Cambridge - London - New York - New Rochelle - Melbourne - Sydney 1987.
  46. Woodward, F.I, Smith, T.M., Emanuel, W.R.: A global land primary productivity and phytogeography model. - Global Biogeochemical Cycles 9: 471-490, 1995. Go to original source...
  47. Wullschleger, S.D.: Biochemical limitations to carbon assimilation in C3 plants - a retrospective analysis of the A/Ci curves from 109 species. - J. Exp. Bot. 44: 907-920, 1993. Go to original source...