Photosynthetica 2012, 50(4):481-500 | DOI: 10.1007/s11099-012-0076-9

Modelling photosynthesis in shallow algal production ponds

R. J. Ritchie1,*, A. W. D. Larkum2
1 Faculty of Technology and Environment, Prince of Songkla University-Phuket, Kathu, Phuket, Thailand
2 Climate Change Cluster, University of Technology, Sydney, Australia

Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/Eopt) × exp(1 - E/Eopt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O2-electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m-2 s-1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m-2 s-1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell's and Fresnel's laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1-0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha-1 y-1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.

Keywords: algal production ponds; Chlorella; Dunaliella; electron transport rate; light saturation curves; Phaeodactylum; photoinhibition; photosynthesis; photosynthesis vs. depth; primary productivity; pulse amplitude modulation fluorometry

Received: December 4, 2011; Accepted: August 25, 2012; Published: December 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ritchie, R.J., & Larkum, A.W.D. (2012). Modelling photosynthesis in shallow algal production ponds. Photosynthetica50(4), 481-500. doi: 10.1007/s11099-012-0076-9.
Download citation

References

  1. Ai, W., Guo, S., Qin, L., Tang, Y.: Development of a groundbased space micro-algae photo-bioreactor. - Adv. Space Res. 41: 742-747, 2008. Go to original source...
  2. Allen, M.M.: Methods for cyanophyceae. - In: Stein, J.R. (ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Pp. 127-138. Cambridge Univ. Press, Cambridge 1973.
  3. Antoni, D., Zverlov, V.V., Scharz, W.H.: Biofuels from microbes. - Appl. Microbiol. Biotechnol. 77: 23-35, 2007. Go to original source...
  4. Belasco, W.: Algae Burgers for a Hungry World? The Rise and Fall of Chlorella Cuisine. - Technol. Cult. 38: 608-634, 1997. Go to original source...
  5. Behrenfeld, M.J., Falkowski, P.G.: Photosynthetic rates derived from satellite-based chlorophyll concentration. - Limnol. Oceanogr. 42: 1-20, 1997. Go to original source...
  6. Bidigare, R.R., Prezelin, B.B., Smith, R.C.: Bio-optical models and the problems of scaling. - In: Falkowski, P.G. (ed.): Primary Productivity and Biogeochemical Cycles in the Sea. Pp. 175-212. Plenum Press, New York 1992. Go to original source...
  7. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  8. Borowitzka, L.J.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. - J. Biotechnol. 70: 313-321, 1999. Go to original source...
  9. Borowitzka, M.A.: Algal biotechnology products and processes - matching science and economics. - J. Appl. Phycol. 4: 267-279, 1992. Go to original source...
  10. Borowitzka, M.A., Borowitzka, L.J.: Micro-algal Biotechnology. - Cambridge Univ. Press Publ., Cambridge 1988.
  11. Chisti, Y.: Biodiesel from microalgae. - Biotechnol. Adv. 25: 294-306, 2007. Go to original source...
  12. Chisti, Y.: Biodiesel from microalgae beats bioethanol. - Trends Biotechnol. 26: 126-131, 2008a. Go to original source...
  13. Chisti, Y.: Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants? - Trends Biotechnol. 26: 351-352, 2008b. Go to original source...
  14. Colinvaux, P.A.: Why Big Fierce Animals are Rare: an Ecologist's Perspective. - Princeton Univ. Press, Princeton 1978.
  15. Cullen J.J., Geider, R.J., Ishizaka, J. et al.: Towards a general description of phytoplankton growth for biogeochemical models. - In: Evans, G.T., Fasham, M.J.R. (ed.): Towards a General Description of Phytoplankton Growth for Biogeochemical Models. Pp. 153-176. NATO ASl Series 1, Vol. 10. Springer, Berlin 1993. Go to original source...
  16. Dauta, A., Devaux, J., Piquemal, F., Boumnich, L.: Growth rate of four freshwater algae in relation to light and temperature. - Hydrobiologia 207: 221-226, 1990. Go to original source...
  17. Davidson, A.T.: Effects of Ultraviolet Radiation on Microalgal Growth, Survival and Production. - In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications Vol. II. Pp. 715-767. Science Publishers, Enfield 2006.
  18. Duarte, P.: Photosynthesis-Irradiance Relationships in Marine Algae. - In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. II. Pp. 639-670. Science Publishers, Enfield 2006.
  19. Eilers, P.H.C., Peeters, J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. - Ecol. Model. 42: 199-215, 1988. Go to original source...
  20. Engqvist, A., Sjöberg, S.: An analytical integration method of computing diurnal primary production from Steele's light response curve. - Ecol. Model. 8: 219-232, 1980. Go to original source...
  21. Falkowski, P.G.: Light-shade adaptation and assimilation numbers. - Plankton Res. 3: 203-216, 1981. Go to original source...
  22. Falkowski, P.G., Greene, R., Kolber, Z.: Light utilization and photoinhibition of photosynthesis in marine phytoplankton. - In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 407-432. BIOS Scietific Publ., Oxford 1994.
  23. Falkowski, P.G., Raven, J.A.: Aquatic photosynthesis. 2nd E.n. Princeton Univ. Press, Princeton 2007.
  24. Fawley, M.W.: Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). - J. Phycol. 20: 67-72, 1984. Go to original source...
  25. Garcia, H.E., Gordon, L.: Oxygen Solubility in Seawater: Better Fitting Equations. - Limnol. Oceanogr. 37: 1307-1312, 1992. Go to original source...
  26. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  27. Giordano, M., Beardall, J.: Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. - Global Nest J. 11: 79-85, 2009.
  28. Gloag, R.S., Ritchie, R.J., Chen, M., Larkum, A.W.D., Quinnell, R.G.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll dcontaining oxyphotobacterium Acaryochloris marina Miyashita. - Biochim. Biophys. Acta-Bioenergetics 1767: 127-135, 2007. Go to original source...
  29. Grobbelaar, J.U.: Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? - J. Appl. Phycol. 19: 591-598, 2007. Go to original source...
  30. Grobbelaar, J.U., Soeder, C.J., Stengel, E.: Modelling Algal Productivity in Large Outdoor Cultures and Waste Treatment Systems. - Biomass 21: 297-314, 1990. Go to original source...
  31. Huntley, M.E., Redalje, D.G.: CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. - Mitig. Adapt. Strat. GL 12: 573-608, 2007. Go to original source...
  32. Jassby, A.D., Platt T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. - Limnol. Oceanogr. 21: 540-547, 1976. Go to original source...
  33. Johnson, M.L., Faunt, L.M.: Parameter estimation by least squares methods. - Methods Enzymol. 210: 1-37, 1992. Go to original source...
  34. Kroon, B.M.A., Ketelaars, H.A.M., Fallowfield, H.J., Mur, L.R.: Modelling microalgal productivity in a High Rate Algal Pond based on wavelength dependent optical properties. - J. Appl. Phycol. 1: 247-256, 1989. Go to original source...
  35. Larkum, A.W.D.: Limitations and prospects of natural photosynthesis for bioenergy production. - Curr. Opin. Biotechnol. 21: 271-276, 2010. Go to original source...
  36. Larkum, A.W.D., Douglas, S.E., Raven, J.A. (ed.): Photosynthesis in Algae. - Kluwer Academic, Dordrecht 2003. Go to original source...
  37. Larkum, T., Howe, C.J.: Molecular Aspects of Light-harvesting Processes in Algae. - Adv. Bot. Res. 27: 257-330, 1997. Go to original source...
  38. Lorentzen, C.J.: The Penetration of light in the sea. - In: Cushing, D.H., Walsh, J.J. (ed.): The Ecology of the Seas. Pp. 173-185. Blackwell Scientific, Oxford 1976.
  39. Lorrain, P., Corson, D.R., Lorrain, F.: Plane electromagnetic waves III.- In: Lorrain, P., Corson, D.R., Lorrain, F.: Electromagnetic Fields and Waves. Pp. 557-561. Freeman, New York 1988.
  40. MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. - J. Phycol. 38: 17-38, 2002. Go to original source...
  41. McBride, G.B.: Calculation of Daily Photosynthesis by Means of Five Photosynthesis-Light Equations. - Limnol. Oceanogr. 37: 1796-1808, 1992.
  42. Melis, A.: Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. - Philos. Trans. Roy. Soc. London Ser. B 323: 397-409, 1989. Go to original source...
  43. Miller, C.B.: Biological Oceanography. - Blackwell Publ., Malden 2006.
  44. Moheimani, N.R., Borowitzka, M.A.: The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. - J. Appl. Phycol. 18: 703-712, 2006a. Go to original source...
  45. Moheimani, N.R., Borowitzka, M.A.: Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. - Biotechnol. Bioeng. 1: 27-36, 2006b.
  46. Morel, A.: Light and marine photosynthesis: a spectral model with geochemical and climatological implications. - Prog. Oceanogr. 26: 263-306, 1991. Go to original source...
  47. Nishri, A., Ben Yarkov, S.: Solubility of oxygen in the Dead Sea. - Hydrobiologia 197: 99-104, 1990. Go to original source...
  48. Oswald, W.J.: Productivity of algae in sewage disposal. - Sol. Energy 15: 107-117, 1973. Go to original source...
  49. Platt T., Sathyendranath S.: Oceanic primary production: estimation by remote sensing at local and regional scales. - Science 241: 1613-1620, 1988. Go to original source...
  50. Ralph, P.J., Gademann, R.: Rapid light curves: A powerful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  51. Richmond, A., Zou, N.: Efficient utilisation of high photon irradiance for mass production of photoautotrophic microorganisms. - J. Appl. Phycol. 11: 123-127, 1999. Go to original source...
  52. Ritchie, R.J.: Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. - Photosynth. Res. 89: 27-41, 2006. Go to original source...
  53. Ritchie, R.J.: Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol or ethanol solvents. - Photosynthetica 46: 115-126, 2008a. Go to original source...
  54. Ritchie, R.J.: Fitting light saturation curves measured using PAM fluorometry. - Photosynth. Res. 96: 201-215, 2008b. Go to original source...
  55. Ritchie, R.J.: Modelling Photosynthetically Active Radiation and Maximum Potential Gross Photosynthesis. - Photosynthetica 48: 596-609, 2010. Go to original source...
  56. Ritchie, R.J.: Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM Fluorometry. - Int. J. Plant Sci. 173: 124-136, 2012. Go to original source...
  57. Ritchie, R.J., Bunthawin, S.: The use of PAM (Pulse Amplitude Modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. 'Viravuth' Pink). - Int. J. Plant Sci. 171: 575-585, 2010a. Go to original source...
  58. Ritchie, R.J., Bunthawin, S.: The Use of PAM (Pulse Amplitude Modulation) Fluorometry to Measure Photosynthesis in Pineapple (Ananas comosus [L.] Merr). - Trop. Plant Biol. 3: 193-203, 2010b. Go to original source...
  59. Robertson, M.J., Wood, A.W., Muchow, R.C.: Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. - Field Crops Res. 48: 11-25, 1996. Go to original source...
  60. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P.: A look back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190. NREL, Golden, Colorado, 1998. (Available at http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf. [Accessed 03 January 2009].) Go to original source...
  61. Sherwood, J.E., Stagnitti, F., Kokkinn, M.J., Williams, W.D.: Dissolved oxygen concentrations in hypersaline waters. - Limnol. Oceanogr. 36: 235-250, 1991. Go to original source...
  62. Shimamatsu, H.: A pond for edible Spirulina production and its hydraulic studies. - Hydrobiologia 151/152: 83-89, 1987. Go to original source...
  63. Shimamatsu, H.: Mass production of Spirulina, an edible microalga. - Hydrobiologia 512: 39-44, 2004. Go to original source...
  64. SMARTS: Simple Model of Atmospheric Radiative Transfer of Sunshine (SMARTS): http://www.nrel.gov/rredc/smarts/ [Accessed 23/11/2009].
  65. Smayda, T.J.: Autecology of bloom-forming microalgae: extrapolation to field populations and the refield-braarud debate revisited. - In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. I, Pp. 215-270. Science Publishers, Enfield 2006.
  66. Sosik, H.M., Mitchell, B.G.: Effects of temperature on growth, light absorption, and quantum yield in Dunaliella tertiolecta (Chlorophyceae). - J. Phycol. 30: 833-840, 1994. Go to original source...
  67. Steele, J.H.: Environmental control of photosynthesis in the sea. - Limnol. Oceanogr. 7: 137-150, 1962. Go to original source...
  68. Stemke, J.A., Santiago, L.S.: Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. - Photosynthetica 49: 195-200, 2011. Go to original source...
  69. Sukenik, A., Levy, R.S., Levy, Y., Falkowski, P.G., Dubinsky, Z.: Optimizing algal biomass production in an outdoor pond: a simulation model. - J. Appl. Phycol. 3: 191-201, 1991. Go to original source...
  70. Talling, J.F, Wood, R.B, Prosser, M.V., Baxter, R.M.: The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. - Freshwater Biol. 3: 53-76, 1973. Go to original source...
  71. Walker, D.A.: The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. - Oxygraphics Publ., Sheffield 1990.
  72. Walker, D.A.: Biofuels, facts, fantasy, and feasibility. - J. Appl. Phycol. 21: 509-517, 2009. Go to original source...
  73. Walker, D.A.: Biofuels - for better or worse? - Ann. Appl. Biol. 156: 319-327, 2010. Go to original source...
  74. Waltz, E.: Biotechs green gold? - Nat. Biotechnol. 27: 15-18, 2009. Go to original source...
  75. Warburg, O.: [On the rate of photochemical carbonic acid decomposition in living cells.] - Biochem. Z. 100: 232-262, 1919. [In German.]
  76. Weissman, J.C., Goebel, R.P., Benemann, J.R.: Photobioreactor design: mixing, carbon utilization, and Oxygen Accumulation. - Biotechnol. Bioeng. 31: 336-344, 1988. Go to original source...
  77. Westlake, D.F.: Comparisons of plant productvity. - Biol. Rev. 38: 385-425, 1963. Go to original source...
  78. Weyer, K.M., Bush, D.R., Darzins, A., Willson, B.D.: Theoretical maximum algal oil production. - Bioenerg. Res. 3: 204-213, 2010. Go to original source...
  79. White, A.J., Critchley, C.: Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. - Photosynth. Res. 59: 63-72, 1999. Go to original source...
  80. Zmora, O., Richmond, A.: Microalgae for aquaculture, microalgae production for aquaculture. - In: Richmond, A. (ed.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Pp. 365-79. Blackwell Scientific, Oxford 2004. Go to original source...