Photosynthetica 2017, 55(4):679-688 | DOI: 10.1007/s11099-017-0703-6
Leaf trait plasticity in six forest tree species of central Amazonia
- 1 Coordination of Environmental Dynamic, National Institute for Research in the Amazon (INPA), Manaus, Brazil
- 2 INPA's Botany Graduate Program, Manaus, Brazil
Tropical rainforest trees adjust leaf traits during ontogeny to cope with changes in the physical environment and maximize their carbon uptake. The aim of this study was to determine the plasticity index (PI) of leaf traits in understory and canopy leaves of six Amazonian tree species. In four of the six species the PI of leaf traits varied within species, and in four of the ten leaf traits assessed, the PI differed between species. The greatest PI values were found for stomatal density (Ds) and CO2-saturated photosynthesis, and the lowest ones were found for stomatal size, and leaf thickness. Despite the differences in PI values within species, the mean PI was similar in all the six species. As the saplings grow toward the canopy, the strategy to increase carbon uptake involves increasing Ds and leaf nitrogen and reducing stomatal size.
Keywords: gas exchange; Minquartia guianensis; Pouteria macrophylla; Protium apiculatum; Rinorea paniculata
Received: October 6, 2016; Accepted: February 10, 2017; Published: December 1, 2017Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Aasamaa K., Sõber A., Rahi M.: Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. - Aust. J. Plant Physiol. 28: 765-774, 2001. Go to original source...
- Al Afas N., Marron N., Ceulemans R.: Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. - Environ. Exp. Bot. 58: 279-286, 2006. Go to original source...
- Ambrose A.R., Sillett S.C., Koch G.W. et al.: Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). - Tree Physiol. 30: 1260-1272, 2010. Go to original source...
- Bakker J.C.: Effects of humidity on stomatal density and its relation to leaf conductance. - Sci. Hortic.-Amsterdam 48: 205-212, 1991.
- Bell G., Lechowicz M.J.: Spatial heterogeneity at small scales and how plants respond to it.-In: Roy J., Caldwell M.M., Pearce R.P. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes above- and below Ground. Pp. 391-414. Academic Press, New York 1994. Go to original source...
- Bento M.: [Carbon assimilation, water use efficiency, stomatal and mesophyll conductance and electron transport rate in canopy trees of Dinizia excelsa Ducke (Fabaceae, Mimosoideae)]. - MSc. Thesis. Forest Science Graduate Program. National Institute for Research in the Amazon, Manaus 2012. [In Portuguese]
- Berger D., Altmann T.: A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. - Gene. Dev. 14: 1119-1131, 2000.
- Bixenmann R.J., Coley P.D., Weinhold A., Kursar T.A.: High herbivore pressure favors constitutive over induced defense. - Ecol. Evol. 6: 6037-6049, 2016. Go to original source...
- Björkman O.: Responses to different quantum f1ux densities.-In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology: Responses to the Physical Environment. Pp. 57-107. Springer Verlag, New York 1981. Go to original source...
- Boeger M.R.T., Alves L.C., Negrelle R.R.B.: Leaf morphology of 89 tree species from a lowland tropical rain forest (Atlantic forest) in South Brazil. - Braz. Arch. Biol. Techn. 47: 933-943, 2004. Go to original source...
- Bradshaw A.D.: Evolutionary significance of phenotypic plasticity in plants. - Adv. Genet. 13: 115-155, 1965. Go to original source...
- Camargo M.A.B., Marenco R.A.: Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. - Acta Amazon. 41: 205-2012, 2011.
- Coley P.D.: Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. - Oecologia 74: 531-536, 1988. Go to original source...
- El-Sharkawy M.A., Cock J.H., Hernandez A.D.P.: Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. - Photosynth. Res. 7: 137-149, 1985. Go to original source...
- England J.R., Attiwill P.M.: Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. - Trees 20: 79-90, 2006. Go to original source...
- Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. - P. Natl. Acad. Sci. USA 106: 10343-10347, 2009. Go to original source...
- Furukawa A.: Stomatal frequency of Quercus myrsinaefolia grown under different irradiances. - Photosynthetica 34: 195-199, 1998. Go to original source...
- Galmés J., Flexas J., Savé R., Medrano H.: Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. - Plant Soil 290: 139-155, 2007. Go to original source...
- Gindel I.: Stomatal number and size as related to soil moisture in tree xerophytes in Israel. - Ecology 50: 263-267, 1969. Go to original source...
- Givnish T.J.: Adaptation to sun and shade: a whole-plant perspective. - Aust. J. Plant Physiol. 15: 63-92, 1988. Go to original source...
- Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. - Nature 424: 901-908, 2003. Go to original source...
- Ichie T., Inoue Y., Takahashi N. et al.: Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. - J. Plant Res. 129: 625-635, 2016. Go to original source...
- Jarvis P.G., McNaughton K.G.: Stomatal control of transpiration: scaling up from leaf to region. - Adv. Ecol. Res. 15: 1-49, 1986. Go to original source...
- Kenzo T., Inoue Y., Yoshimura M. et al.: Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. - Oecologia 177: 191-202, 2015. Go to original source...
- Kenzo T., Yoneda R., Sano M. et al.: Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. - JARQ-Jpn Agr. Res. Q. 46: 167-180, 2012. Go to original source...
- Koch G.W., Sillett S.C., Jennings G. M., Davis S.D.: The limits to tree height. - Nature 428: 851-854, 2004. Go to original source...
- Lockheart M.J., Poole I., van Bergen P.F., Evershed R.P.: Leaf carbon isotope compositions and stomatal characters: important considerations for paleoclimate reconstructions. - Org. Geochem. 29: 1003-1008, 1998. Go to original source...
- Magalhães N.D., Marenco R.A., Mendes K.R.: [Acclimation of manwood seedlings to full sunlight]. - Pesqui. Agropecu. Bras. 44: 687-694, 2009. [In Portuguese]
- Marenco R.A., Gonçalves J.F.C., Vieira G.: Photosynthesis and leaf nutrient contents in Ochroma pyramidale (Bombacaceae). - Photosynthetica 39: 539-543, 2001. Go to original source...
- Marenco R.A., Nascimento H.C.S., Magalhães N.S.: Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment. - Photosynthetica 52: 493-500, 2014. Go to original source...
- Medri M.E., Lleras E.: [Ecophysiology of Amazonian plants: foliar anatomy and ecophysiology of Bertholletia excelsa. Humb. & Bonpl. (Brazil nut) Lecythidaceae]. - Acta Amazon. 9: 15-23, 1979. [In Portuguese] Go to original source...
- Nascimento H.C.S., Marenco R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. - Photosynthetica 51: 457-464, 2013. Go to original source...
- Nejad A.R., Van Meeteren U.: Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. - Physiol. Plantarum 125: 324-332, 2005. Go to original source...
- Niinemets Ü.: Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. - J. Plant Res. 129: 313-338, 2016. Go to original source...
- Niinemets Ü.: Research review components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
- Quarrie S.A., Jones H.G.: Effects of abscisic acid and water stress on development and morphology of wheat. - J. Exp. Bot. 28: 192-203, 1977. Go to original source...
- Rankin-de-Mérona J.M., Prance G.T., Hutchings R.W. et al.: Preliminary results of a large-scale tree inventory of upland rain forest in the Central Amazon. - Acta Amazon. 22: 493-534, 1992. Go to original source...
- Rozendaal D.M.A., Hurtado V.H., Poorter L.: Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. - Funct. Ecol. 20: 207-216, 2006. Go to original source...
- Sack L., Melcher P.J., Liu W.H. et al.: How strong is intracanopy leaf plasticity in temperate deciduous trees?. - Am. J. Bot. 93: 829-839, 2006. Go to original source...
- Salisbury E. J.: On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. - Philos. T. R. Soc. Lon. B. 216: 1-65, 1927.
- Schäfer K.V.R., Oren R., Tenhunen J.D.: The effect of tree height on crown level stomatal conductance. - Plant Cell Environ. 23: 365-375, 2000. Go to original source...
- Schlüter U., Muschak M., Berger D., Altmann T.: Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (SDD1-1) under different light regimes. - J. Exp. Bot. 54: 867-874, 2003. Go to original source...
- Scoffoni C., Kunkle J., Pasquet-Kok J. et al.: Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. - New Phytol. 207: 43-58, 2015. Go to original source...
- Smith H.: Light quality, photoperception, and plant strategy. - Annu. Rev. Plant Physio. 33: 481-518, 1982. Go to original source...
- Stearns S.C.: Evolution of reaction norms.-In: Losos J.B., Baum D.A., Futuyma D.J. et al. (ed.): The Princeton Guide to Evolution. Pp. 261-267. Princeton University Press, New Jersey 2014. Go to original source...
- Sugano S.S., Shimada T., Imai Y. et al.: Stomagen positively regulates stomatal density in Arabidopsis. - Nature 463: 241-246, 2010. Go to original source...
- Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. - J. Plant Res. 114: 93-105, 2001. Go to original source...
- Valladares F., Chico J.M., Aranda I. et al.: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. - Trees 16: 395-403, 2002.
- Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. - Annu. Rev. Ecol. Evol. S. 39: 237-257, 2008.
- Valladares F., Wright S.J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. - Ecology 81: 1925-1936, 2000.
- Witkowski E.T.F., Lamont B.B.: Leaf specific mass confounds leaf density and thickness. - Oecologia 88: 486-493. 1991. Go to original source...
- Woodruff D.R., Bond B.J., Meinzer F.C.: Does turgor limit growth in tall trees?‒Plant Cell Environ. 27: 229-236, 2004. Go to original source...
- Woodward F.I., Kelly C.K.: The influence of CO2 concentration on stomatal density. - New Phytol. 131: 311-327, 1995. Go to original source...
- Zimmermann M.H.: Hydraulic architecture of some diffuseporous trees. - Can. J. Bot. 56: 2286-2295, 1978. Go to original source...