Photosynthetica 2010, 48(1):59-66 | DOI: 10.1007/s11099-010-0009-4

Antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) enhances the tomato high-temperature tolerance through reductions of trienoic fatty acids and alterations of physiological parameters

X. Liu1,2, J. H. Yang1, B. Li2, X. M. Yang2, Q. W. Meng2,*
1 Department of Horticulture, Zhejiang University, Hangzhou, P. R. China
2 College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China

We studied how the reductions of trienoic fatty acids (TAs) and increases of dienoic fatty acids (DAs) enhanced high-temperature tolerance in antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) transgenic tomato (Lycopersicon esculentum Mill.) plants. In transgenic plants, the content of linolenic acid (18:3) was markedly decreased, while linoleic acid (18:2) was increased correspondingly and the similar changes were observed under high-temperature stress as well. Under high-temperature stress, transgenic plants can maintain a relatively higher level of net photosynthetic rate (P N) and chlorophyll (Chl) content than that of wild type (WT) plants. A decreased Chl/Carotenoids (xanthophylls and carotenes, Car) ratio and Chl a/b ratio were observed in transgenic plants. Transgenic plants exhibited visible decrease in the relative electrolyte conductivity, higher activities of antioxidative enzymes and lower reactive oxygen species correspondingly than WT. In addition, high-temperature stress for 24 h caused more extensive changes of chloroplast ultrastructure in WT than in transgenic plants. We therefore suggested that the enhancement of high-temperature tolerance in antisense expression of LeFAD7 transgenic plants might be raised from the reduction of TAs and increase of DAs subsequently leading to series of physiological alterations.

Keywords: high-temperature tolerance; chloroplast omega-3 fatty acid desaturase; Lycopersicon esculentum Mill.; trienoic fatty acids

Received: July 16, 2009; Accepted: December 15, 2009; Published: March 1, 2010Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, X., Yang, J.H., Li, B., Yang, X.M., & Meng, Q.W. (2010). Antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) enhances the tomato high-temperature tolerance through reductions of trienoic fatty acids and alterations of physiological parameters. Photosynthetica48(1), 59-66. doi: 10.1007/s11099-010-0009-4.
Download citation

References

  1. Alfonso, M., Yruela, I., Almárcegui, S., Torrado, E., Pérez, M.A., Picorel R.: Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L) Merr. cell cultures deficient in fatty acid desaturation. - Planta 212: 573-582, 2001. Go to original source...
  2. Blum, A.: Plant Breeding for Stress Environments. - CRC Press Inc, Boca Raton 1988.
  3. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  4. Bruinsma, J.: A comment on the spectrophotometric determination of chlorophyll. - Biochemica and Biophysica Acta. 52:576-578, 1961. Go to original source...
  5. Camejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., Sevilla, F.: Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. - Funct. Plant Biol. 33: 177-187, 2006. Go to original source...
  6. Camejo, D., Rodríguez, P., Morales, M.A., Dell'amico, J.M., Torrecillas, A., Alarcón, J.J.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. - J. Plant Physiol. 162: 281-289, 2005. Go to original source...
  7. Chen, T.H.H., Shen, Z.Y., Lee, P.H.: Adaptability of crop plants to high temperature stress. - Crop Sci. 22: 719-725, 1982. Go to original source...
  8. Chen, Z.Q., Xu, C.H., Chen, M.J., Xu, L., Wang, K.F., Lin, S.Q.: Effect of chilling acclimation on thylakoid membrane protein of wheat. - Acta Bot. Sin. 36: 423-429,1994.
  9. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases. I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  10. Gibson, S., Arondel, V., Iba, K., Sommerville, C.: Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. - Plant Physiol. 106:1615-1621, 1994. Go to original source...
  11. Guo, Y.P., Zhou, H.F., Zhang, L.C.: Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. - Sci. Hort. 108: 260-267, 2006. Go to original source...
  12. Havaux, M., Tardy, F.: Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. - Plant Physiol. 113: 913-923, 1997. Go to original source...
  13. Heckathorn, S.A., Downs, C.A., Sharkey, T.D., Coleman, J.S.: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. - Plant Physiol. 116: 439-444, 1998. Go to original source...
  14. Hugly, S., Kunst, L., Browse, J., Somerville, C.: Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. - Plant Physiol. 90: 1134-1142, 1989. Go to original source...
  15. Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S., Somerville, C.: A gene encoding a chloroplast omega-3-fatty-acid desaturase complements alterations in fatty-acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. - J. Biol. Chem. 268: 24099-24105, 1993.
  16. Iba, K.: Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. - Annu. Rev. Plant Biol. 53: 225-245, 2002. Go to original source...
  17. Jimenez, A., Hernandez, J.A., del Rio, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. - Plant Physiol. 114: 275-284, 1997. Go to original source...
  18. Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M., Iba, K.: Fatty-acid desaturase during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco-leaves. - Plant Physiol. 107: 1177-1185, 1995. Go to original source...
  19. Kunst, L., Browse, J., Somerville, C.: Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. - Plant Physiol. 91: 401-408, 1989. Go to original source...
  20. Liu, X.Y., Yang, J.H., Li, B., Yang, X.M., Meng, Q.W.: Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. - J. Integr. Plant Biol. 48: 1096-1107, 2006. Go to original source...
  21. Martineau, J.R., Specht, J.E., Williams, J.H., Sullivan, C.Y.: Temperature tolerance in soybean. 1. Evaluation of technique for assessing cellular membrane thermostability. - Crop Sci. 19: 75-78, 1979. Go to original source...
  22. McConn, M., Browse, J.: The critical requirement for linolenic acid is pollen development, not photosynthesis, in an arabidopsis mutant. - Plant Cell 8: 403-416, 1996. Go to original source...
  23. McDonald, G.K., Paulsen, G.M.: High temperature effects on photosynthesis and water relations of grain legumes. - Plant Soil 196: 47-58, 1997. Go to original source...
  24. Moon, B.Y., Higashi, S.I., Gombos, Z., Murata, N.: Unsaturation of membrane-lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photo inhibition in transgenic tobacco plants. - Proc. Natl. Acad. Sci. USA 92: 6219-6223, 1995. Go to original source...
  25. Murakami, Y., Tsuyama, M., Kobayashi, Y., Hiroaki, K., Iba, K.: Trienoic fatty acids and plant tolerance of high temperature. - Science 287: 476-479, 2000.
  26. Pearcy, R.: Effect of growth temperature on the fatty-acid composition of the leaf lipids in Atriplex lentiformis (Torr) Wats. - Plant Physiol. 61: 484-486, 1978. Go to original source...
  27. Raison, J.K., Chapman, A., Wright, L.C., Jacobs, S.W.L.: The role of the membrane. - In: Lyons J.M., Graham D.J., Raison H.K. (ed.): Low Temperature Stress in Crop Plants. Pp. 177-186, Academic Press, New York 1979. Go to original source...
  28. Routaboul, J.M., Fischer, S.F., Browse, J.: Trienoic fatty acids are required to maintain chloroplast function at low temperatures. - Plant Physiol. 124: 1697-1705, 2000. Go to original source...
  29. Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. - Plant Sci. 162: 897-904, 2002. Go to original source...
  30. Santos, C.L.V., Campos, A., Azevedo, H., Caldeira, G.: In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. - J. Exp. Bot. 52: 351-360, 2001. Go to original source...
  31. Siegenthaler, P.A., Eichenberger, W.: Structure, function and metabolism of plant lipids. - In: Plant Lipids-Metabolism- Congresses. Pp. 485-488. Elsevier Science Publ., Amsterdam 1984.
  32. Sohn, S.O., Back, K.: Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. - Biol. Plant. 51: 340-342, 2007. Go to original source...
  33. Su, W.A., Wang, W.Y., Li, J.S.: Analysis of plant lipid and fatty acid. - Plant Physiol. Commun. 3: 54-60, 1980.
  34. Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J., Williams, W.P.: Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. - Biochim. Biophy. Acta 849: 131-140, 1986. Go to original source...
  35. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Hightemperature tolerance in plants: an overview. - Environ. Exp. Bot. 61: 199-223, 2007. Go to original source...
  36. Wahid, A., Ghazanfar, A.: Possible involvement of some secondary metabolites in salt tolerance of sugarcane. - J. Plant Physiol. 163: 723-730, 2006. Go to original source...
  37. Wahid, A., Shabbir, A.: Induction of high-temperature stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. - Plant Growth Regul. 46: 133-141, 2005. Go to original source...
  38. Wang, A.G., Luo, G.H.: Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. - Plant Physiol. Commun. 6: 55-57, 1990.
  39. Xu, Y.N., Siegenthaler, P.A.: Low temperature treatments induce an increase in the relative content of both linolenic and delta(3)-trans-hexadecenoic acid in thylakoid membrane phosphatidylglycerol of squash cotyledons. - Plant Cell Physiol. 38: 611-618, 1997. Go to original source...