Photosynthetica 2009, 47(1):1-10 | DOI: 10.1007/s11099-009-0003-x

Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa

L. Amaya-Carpio1, F.T. Davies Jr.1,*, T. Fox2, C. He1
1 Department of Horticultural Sciences and Faculty of Molecular and Environmental Plant Sciences (MEPS), Texas A&M University, College Station, USA
2 Department of Biology, University of West Florida, Pensacola, USA

The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer's recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.

Keywords: chlorophyll; Glomus intraradices; leaf area; leaf area ratio; net photosynthetic rate; phosphatase; plant height; root; shoot; stomatal conductance

Received: April 7, 2008; Accepted: August 15, 2008; Published: March 1, 2009Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Amaya-Carpio, L., Davies, F.T., Fox, T., & He, C. (2009). Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica47(1), 1-10. doi: 10.1007/s11099-009-0003-x.
Download citation

References

  1. Abbot, L.K., Robson, A.D.: The effect of VA mycorrhiza on plant growth.-In: Powell, C.L., Bagyaraj, D.L. (ed.): VA Mycorrhizae. Pp. 113-130. CRC Press, Boca Raton 1984. Go to original source...
  2. Aguilera-Gomez, L., Davies, F.T., Jr., Olalde-Portugal, V., Duray, S.A., Phavaphutanon, L.: Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plant growth of chile ancho pepper (Capsicum annuum L. cv. San Luis).-Photosynthetica 36: 441-449, 1999. Go to original source...
  3. Amaya-Carpio, L., Davies, F.T., Jr., Arnold, M.A.: Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers - effect on growth and leachate of container-grown bush morning glory [Ipomoea carnea subsp. fistulosa] under high production temperatures.-J. amer. Soc. hort. Sci. 130: 131-139, 2005. Go to original source...
  4. Andrade, G., Mihara, K.L., Linderman, R.G., Bethlenfalvay, G.J.: Soil aggregation status and rhizobacteria in the mycorrhizosphere.-Plant Soil 202: 89-96, 1998. Go to original source...
  5. Arnold, M.A., Lang, H.J.: Greenhouse and subsequent landscape growth responses of petunia and pansy to container size, copper-coated containers and extended production times.-J. subtrop. Plant Sci. 48: 49-56, 1996.
  6. Augé, R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis.-Mycorrhiza 11: 361-365, 2001. Go to original source...
  7. Augé, R.M., Moore, J.L., Cho, K., Stutz, J.C., Sylvia, D.M., Al-Agely, A.K., Saxton, A.M.: Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae.-J. Plant Physiol. 160: 1147-1156, 2003. Go to original source...
  8. Augé, R.M., Sylvia, D.M., Park, S., Buttery, B.R., Saxton, A.M., Moore J.L., Cho, K.: Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components.-Can. J. Bot. 82: 503-514, 2004.
  9. Biermann, B., Linderman, R.G.: Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization.-New Phytol. 87: 63-67, 1981. Go to original source...
  10. Bolan, N.S.: A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants.-Plant Soil 134: 189-207, 1991. Go to original source...
  11. Bolan, N.S., Robson, A.D., Barrow, N.J.: Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi.-Soil Biol. Biochem. 16: 419-420, 1984. Go to original source...
  12. Clark, R.B., Zeto, S.K.: Mineral acquisition by arbuscular mycorrhizal plants.-J. Plant Nutr. 23: 867-902, 2000. Go to original source...
  13. Davies, F.T., Jr., Olalde-Portugal, V., Escamilla, H.M., Ferrera-Cerrato, R.C., Alvarado, M.J., Espinosa, I.J.: Alleviating phosphorus stress of chile ancho pepper (Capsicum annuum L. cv. San Luis) by arbuscular mycorrhizal inoculation.-J. hort. Sci. Biotech. 75: 655-661, 2000. Go to original source...
  14. Davies, F.T., Jr., Potter, J.R., Linderman, R.G.: Mycorrhiza and repeated drought exposure affect drought resistance and extra-radical hyphae development of pepper plants independent of plant size and nutrient content.-J. Plant Physiol. 139: 289-294, 1992. Go to original source...
  15. Davies, F.T., Jr., Potter, J.R., Linderman, R.G.: Drought resistance of mycorrhizal pepper plants independent of leaf P concentration-response on gas exchange and water relations.-Physiol. Plant. 87: 45-53, 1993. Go to original source...
  16. Davies, F.T., Jr., Svenson, S.E., Cole, J.C., Phavaphutanon, L., Duray, S.A., Olalde-Portugal, V., Meier, C.E., Bo, S.H.: Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought.-Tree Physiol. 16: 985-993, 1996. Go to original source...
  17. Douds, D.D., Jr., Pfeffeer, P.E., Schachar-Hill, Y.: Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas.-In: Kapulnik, Y. and Douds, D.D., Jr. (ed.): Arbuscular Mycorrhizas: Physiology and Function. Pp. 107-130. Kluwer Academic Publ., Dordrecht 2000. Go to original source...
  18. Ezawa, T., Hayatsu, M., Saito, M.: A new hypothesis on the strategy for acquisition of phosphorous in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant.-Mol. Plant-Microbe Inter. 18: 1046-1053, 2005. Go to original source...
  19. Ezawa, T., Saito, M., Yoshida, T.: Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp.-Plant Soil 176: 57-63, 1995. Go to original source...
  20. Feng, G., Song, Y.C., Li, X.L., Christie, P.: Contribution of arbuscular mycorrhizal fungi to utilization or organic sources of phosphorus by red clover in a calcareous soil.-Appl. Soil Ecol. 22: 139-148, 2003. Go to original source...
  21. Fries, L.L.M., Pacovsky, R.S., Safir, G.R., Kaminski, J.: Phosphorus effect on phosphatase activity in endomycorrhizal maize.-Physiol. Plant 103: 162-171, 1998. Go to original source...
  22. Gianinazzi, S., Gianinazzi-Pearson, V., Dexheimer, J.: Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.).-New Phytol. 82: 127-132, 1979. Go to original source...
  23. Gianinazzi-Pearson, V.: Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis.-Plant Cell 8: 1871-1883, 1996. Go to original source...
  24. Goldstein, A.H., Baertlein, D.A., McDaniel, R.G.: Phosphate starvation inducible metabolism in Lycopersicon esculentum.-Plant Physiol. 87: 711-715, 1988. Go to original source...
  25. Greer, L.: Organic plug and transplant production. http://www.attra.org/attra-pib/PDF/plugs.pdf.-ATTRA, USDA 2000.
  26. Gryndler, M., Vosátka, M., Hršelová, H., Čatská, V., Chvátalová, I., Jansa, J.: Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry.-J. Plant Nutr. 25: 1341-1358, 2002. Go to original source...
  27. Javot, H., Pumplin, N., Harrison, M.J.: Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.-Plant Cell Environ. 30: 310-322, 2007. Go to original source...
  28. Jones, J.B., Wolf, B., Mills, H.A.: Plant Analysis Handbook.-Micro-Macro Publishing, Athens 1991.
  29. Koide, R.T.: Nutrient supply, nutrient demand and plant response to mycorrhizal infection.-New Phytol. 117: 365-386, 1991. Go to original source...
  30. Koide, R.T.: Physiology of the mycorrhizal plant.-Adv. Plant Pathol. 9: 33-54, 1993.
  31. Koide, R.T., Kabir, Z.: Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyze organic phosphate.-New Phytol. 148: 511-517, 2000. Go to original source...
  32. Koide, R.T., Li, M.: Appropriate controls for vesicular-arbuscular mycorrhiza research.-New Phytol. 111: 35-44, 1989. Go to original source...
  33. Koske, R.W., Gemma, J.N.: A modified procedure for staining roots to detect VA mycorrhizas.-Mycor. Res. 92: 486-505, 1989. Go to original source...
  34. Linderman, R.G.: Managing rhizosphere microorganisms in the production of horticultural crops.-HortScience 2: 1299-1306, 1986.
  35. Linderman, R.G., Davis, E.A.: Evaluation of commercial inorganic and organic fertilizer effects on arbuscular mycorrhizae formed by Glomus intraradices.-HortTechnology 14: 196-202, 2004. Go to original source...
  36. Marschner, H.: Mineral Nutrition of Higher Plants.-Academic Press, London 1995.
  37. Marschner, H., Dell, B.: Nutrient uptake in mycorrhizal symbiosis.-Plant Soil 159: 89-102, 1994. Go to original source...
  38. Moran, R.: Formulae for determination of chlorophyllous pigments extracted with N,N-dimethlyformamide.-Plant Physiol, 69: 1376-1381, 1982. Go to original source...
  39. Munter, R.C., Grande, R.A.: Plant tissue and soil extract analysis by ICP-atomic emission spectrometry.-In: Barnes, R.M. (ed.): Developments in Atomic Plasma Spectrochemical Analysis. Pp. 653-672. Heyden, London 1981.
  40. Nemec, S., Vu, J.V.C.: Effects of soil phosphorus and Glomus intraradices on growth, nonstructural carbohydrates, and photosynthetic activity of Citrus aurantium.-Plant Soil 128: 257-263, 1990. Go to original source...
  41. Pacovsky, R.S.: Carbohydrate, protein and amino acid status of Glycine-Glomus-Bradyrhizobium symbiosis.-Physiol. Plant. 75: 346-354, 1991.
  42. Phavaphutanon, L.: Effects of Vesicular Arbuscular Mycorrhizal (VAM) Fungi on Drought Resistance of Neem Trees (Azadirachta indica. A. Juss).-PhD. Thesis. Dep. Hort. Sci., Texas A&M University, College Station 1996.
  43. Rund, R.C.: Fertilizers.-In: Williams, S. (ed.): Official Methods of Analysis of the Association of Official Analytic Chemists. 14th ed. Pp. 8-37. AOAC, Arlington 1984.
  44. Saito, M.: Symbiotic exchange of nutrients in arbuscular mycorrhiza: transport and transfer of phosphorus.-In: Kapulnik, Y., Douds, D.D. (ed.): Arbuscular Mycorrhizas: Physiology and Function. Pp. 85-106. Kluwer Academic Publ., Dordrecht 2000. Go to original source...
  45. Smith, S.E., Read, D.J.: Mycorrhizal Symbiosis. 2nd Ed.-Academic Press, London 1997.
  46. Tabatabai, M.A.: Soil enzymes.-In: Weaver, R.V., Angle, J.S., Botomley, P.S. (ed.): Methods of Soil Analysis. Part 2. Pp. 775-833. Madison 1994.
  47. Taiz, L. Zeiger. E.: Plant Physiology. 2nd Ed.-Pp. 121-135. Sianuer Assoc. Publ., Sunderland 1998.
  48. Tarafdar, J.C. Marschner, H.: Phosphatase activity in the rhizosphere and of VA mycorrhizal wheat supplied with inorganic and organic phosphorus.-Soil Biol. Biochem. 26: 387-395, 1994. Go to original source...
  49. Tarafdar, J.C., Yadav, R.S. Meena, S.C.: Comparative efficiency of acid phosphatase originated from plant and fungal sources.-J. Plant Nutr. Soil Sci. 164: 279-282, 2001.
  50. Tawaraya, L., Saito, M.: Effect of vesicular-arbuscular mycorrhizal infection on amino acid composition in roots of onion and white clover.-Soil Sci. Plant Nutr. 40: 339-343, 1994. Go to original source...
  51. Tisserant, B., Gianinazzi-Pearson, V., Gianinazzi, S., Gollotte, A.: Plant histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections.-Mycol. Res. 97: 245-250, 1993. Go to original source...
  52. Tobar, R.M., Azcon, R. Barea, J.M.: The improvement of plant N acquisition from an ammonium treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae.-Mycorrhiza 4: 105-108, 1994. Go to original source...
  53. van Aarle, I.M., Rouhier, H., Saito, M: Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability.-Mycol. Res. 106: 1224-1229, 2002. Go to original source...
  54. Villegas, J., Fortin, J.A.: Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 - as nitrogen source.-Can. J. Bot. 80: 571-576, 2002. Go to original source...
  55. Yadava, U.L.: A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 21: 1449-1450, 1986.