Photosynthetica 2016, 54(4):491-501 | DOI: 10.1007/s11099-016-0205-y

Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress

T. S. Per1, S. Khan2, M. Asgher1, B. Bano2, N. A. Khan1,*
1 Department of Botany, Aligarh Muslim University, Aligarh, India
2 Department of Biochemistry, Life Sciences, Aligarh Muslim University, Aligarh, India

Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress.

Keywords: chlorophyll fluorescence; fluorescence spectra; leaf area; phytocystatin; plant dry mass

Received: October 15, 2015; Accepted: January 20, 2016; Published: December 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Per, T.S., Khan, S., Asgher, M., Bano, B., & Khan, N.A. (2016). Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress. Photosynthetica54(4), 491-501. doi: 10.1007/s11099-016-0205-y.
Download citation

References

  1. Ahmad P., Sarwat M., Bhat N.A. et al.: Alleviation of cadmium toxicity in Brassica juncea L. (Czern & Coss.) by calcium application involves various physiological and biochemical strategies.-PloS one 10: doi:10.1371/journal.pone.0114571, 2015. Go to original source...
  2. Anderson M.E.: Determination of glutathione and glutathione disulfide in biological samples.-Method. Enzymol. 113: 548-555, 1985. Go to original source...
  3. Anjum N.A., Umar S., Iqbal M. et al.: Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism.-Russ. J. Plant Physl+ 58: 92-99, 2011.
  4. Arai S., Matsumoto I., Emori Y. et al.: Plant seed cystatins and their target enzymes of endogenous and exogenous origin.-J. Agric. Food Chem. 50: 6612-6617, 2002. Go to original source...
  5. Asgher M., Khan M.I.R., Anjum N.A. et al.: Minimising toxicity of cadmium in plants-role of plant growth regulators.-Protoplasma 252: 399-413, 2015. Go to original source...
  6. Asgher M., Khan N.A., Khan M.I.R. et al.: Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.-Ecotoxicol. Environ. Safe. 106: 54-61, 2014. Go to original source...
  7. Baker N.R., Rosenquist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities.-J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  8. Barceló J., Vazquez M.D., Poschenrieder C.: Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.).-New Phytol. 108: 37-49, 1988. Go to original source...
  9. Bashir H., Ibrahim M.M., Bagheri R. et al.: Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard.-AoB Plants 7: plv001, 2015.
  10. Belenghi B., Acconcia F., Trovato M. et al.: AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death.-Eur. J. Biochem. 270: 2593-2604, 2003.
  11. Beyer W., Fridovich I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.-Anal. Biochem. 161: 559-566, 1987. Go to original source...
  12. Burzynski M., Klobus G.: Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress.-Photosynthetica 42: 505-510, 2004. Go to original source...
  13. Chesnin L., Yien C. H.: Turbidimetric determination of available sulphates.-Soil Sci. Soc. Am. J. 15: 149-151, 1950.
  14. Choppala G., Bolan N.: Cellular mechanisms in higher plants governing tolerance to cadmium toxicity.-Cri. Rev. Plant Sci. 33: 374-391, 2014. Go to original source...
  15. Cobbett C., Goldsbrough P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.-Annu. Rev. Plant Biol. 53: 159-182, 2002. Go to original source...
  16. Eason J.R., West P.J., Brummell D.A. et al.: Overexpression of the protease inhibitor BoCPI-1 in broccoli delays chlorophyll loss after harvest and causes down-regulation of cysteine protease gene expression.-Postharvest Biol. Tec. 97: 23-31, 2014. Go to original source...
  17. Giannopolitis C.N., Ries S.K.: Superoxide dismutases II purification and quantitative relationship with water-soluble protein in seedlings.-Plant Physiol. 59: 315-318, 1977. Go to original source...
  18. Giatonde M.K.: A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids.-Biochem. J. 104: 627-633, 1967. Go to original source...
  19. Heiss S., Schäfer H.J., Haag-Kerwer A., Rausch T.: Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP-sulfurylase and APS reductase.-Plant Mol. Biol. 39: 847-857, 1999. Go to original source...
  20. Hewitt E.J.: Sand and Water Culture Methods used in the Study of Plant Nutrition. Technical Communication No. 22. Pp. 547. Commonwealth Bureau, London 1966.
  21. Huang Y., Xiao B., Xiong L.: Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice.-Planta 226: 73-85, 2007. Go to original source...
  22. Hwang J.E., Hong J.K., Lim C.J. et al.: Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses.-Plant Cell Rep. 29: 905-915, 2010. Go to original source...
  23. Iqbal N., Khan N. A., Nazar R. et al.: Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity.-Environ. Exp. Bot. 78: 84-90, 2012. Go to original source...
  24. Iqbal N., Nazar R., Syeed S. et al.: Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard.-J. Exp. Bot. 62: 4955-4963, 2011. Go to original source...
  25. Jozefczak M., Bohler S., Schat H. et al.: Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of Arabidopsis to cadmium.-Ann. Bot.-London 116: 601-612, 2015. Go to original source...
  26. Khan M.I.R., Iqbal N., Masood A. et al.: Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants.-Plant Growth Regul. 77: 1-11, 2015.
  27. Khan M.I.R., Khan N.A.: Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism.-Protoplasma 251: 1007-1019, 2014. Go to original source...
  28. Khan N.A., Anjum N.A., Nazar R. et al.: Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential.-Russ. J. Plant Physl+ 56: 670-677, 2009. Go to original source...
  29. Kunert K.J., van Wyk S.G., Cullis C.A. et al.: Potential use of phytocystatins in crop improvement, with a particular focus on legumes.-J. Exp. Bot. 66: 3559-3570, 2015. Go to original source...
  30. Kunitz M.: Tissue sulphydryl groups. Crystalline soybean trypsin inhibitor, general properties.-J. Physiol. 30: 291-310, 1947. Go to original source...
  31. Lappartient A.G., Touraine B.: Demand-driven control of root ATP-sulfurylase activity and S uptake in intact canola.-Plant Physiol. 111: 147-157, 1996. Go to original source...
  32. Leung D., Abbenante G., Fairlie D.P.: Protease inhibitors: current status and future prospects.-J. Med. Chem. 43: 305-341, 2000. Go to original source...
  33. Li S., Yang W., Yang T. et al.: Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi-a cadmium accumulating plant.-Int. J. Phytoremediat. 17: 85-92, 2015. Go to original source...
  34. Lindner R. C.: Rapid analytical methods for some of the more common inorganic constituents of plant tissues.-Plant Physiol. 19: 76-89, 1944. Go to original source...
  35. Liu C., Guo J., Cui Y. et al.: Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings.-Plant Soil 344: 131-141, 2011. Go to original source...
  36. Liu L., Sun H., Chen J. et al.: Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.).-Plant Omics 7: 284-290, 2014.
  37. Lowry O.H., Rosebrough N.J., Farr A.L. et al.: Protein measurement with the folin phenol reagent.-J. Biol. Chem. 193: 265-275, 1951.
  38. Martínez M., Cambra I., González-Melendi P. et al.: C1A cysteine-proteases and their inhibitors in plants.-Physiol. Plantarum 145: 85-94, 2012. Go to original source...
  39. Martínez M., Díaz I.: The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship.-BMC Evol. Biol. 8: 198, 2008.
  40. Marschner H.: Functions of mineral nutrients: macronutrients.-In: Marschner H.(ed.): Mineral Nutrition of Higher Plants, 2nd Ed. Pp. 379-396, Academic Press, London 1995. Go to original source...
  41. Masood A., Iqbal N., Khan N.A.: Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulfur in mustard.-Plant Cell Environ. 35: 524-533, 2012. Go to original source...
  42. Maxwell K., Johnson G.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  43. Mobin M., Khan N.A.: Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress.-J. Plant Physiol. 164: 601-610, 2007. Go to original source...
  44. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast.-Plant Cell Physiol. 22: 867-880, 1981.
  45. Noctor G., Strohm M., Jouanin L. et al.: Synthesis of glutathione in leaves of transgenic poplar overexpressing glutamylcysteine synthetase.-Plant Physiol. 112: 1071-1078, 1996. Go to original source...
  46. Okuda T., Matsuda Y., Yamanaka A. et al.: Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment.-Plant Physiol. 97: 1265-1267, 1991. Go to original source...
  47. Pernas M., Sá nchez-Monge R., Salcedo G. et al.: Biotic and abiotic stress can induce cystatin expression in chestnut.-FEBS Lett. 467: 206-210, 2000. Go to original source...
  48. Prins A., van Heerden P.D., Olmos E. et al.: Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5- bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.-J. Exp. Bot. 59: 1935-1950, 2008.
  49. Quain M.D., Makgopa M.E., Márquez-García B. et al.: Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max.) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.-Plant Biotechnol. J. 12: 903-913, 2014. Go to original source...
  50. Resurreccion A.P., Makino A., Bennett J. et al.: Effects of sulfur nutrition on the growth and photosynthesis of rice.-Soil Sci. Plant Nutr. 47: 611-620, 2001. Go to original source...
  51. Sarvari E.: Effects of heavy metals on chlorophyll-protein complexes in higher plants: Causes and consequences.-In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 865-888. CRC Press, Boca Raton 2005. Go to original source...
  52. Shangguan Z., Shao M., Dyckmans J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat.-J. Plant Physiol. 156: 46-51, 2000. Go to original source...
  53. Sharma S., Rashid F., Bano B.: Studies on low molecular mass phytocystatins purified from Phaseolus mungo (Urd).-Biochemistry-Moscow+ 71: 406-413, 2006. Go to original source...
  54. Shi G.R., Cai Q.S.: Photosynthetic and anatomic responses of peanut leaves to cadmium stress.-Photosynthetica 46: 627-630, 2008. Go to original source...
  55. Takashima T., Hikosaka K., Hirose T.: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species.-Plant Cell Environ. 27: 1047-1054, 2004. Go to original source...
  56. van der Vyver C., Schneidereit J., Driscoll S. et al.: Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance.-Plant Biotechnol. J. 1: 101-112, 2003. Go to original source...
  57. Usuda H.: The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light.-Plant Cell Physiol. 26: 1455-1463, 1985.
  58. Zhang X., Liu S., Takano T.: Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.-Plant Mol. Biol. 68: 131-143, 2008. Go to original source...